Study on Characteristics and Operating Parameters of Axial Rotating Hydrocyclone

Author(s):  
Yan Xu ◽  
Zunce Wang ◽  
Fengxia Lv ◽  
Sen Li

The axial rotation of the hydrocyclone affects its internal flow characteristics and separating effect directly, as some local applications require the static hydrocyclone rotates about its own axis. Based on CFD, velocity distribution in the axial rotating hydrocyclone is studied. It is shown that as the rotation speed increasing, the tangential velocity improves and its gradient reduces in free vortex region observably, while the radial velocity has an incremental trend in the section of the small cone. The laboratory experiments are carried out for the static hydrocyclone of disposal capacity of 4 m3/h at 100r/min ∼ 300r/min. The relationships among rotation speed, flowrate, pressure drop and separated efficiency are achieved, which agree well with the numerical simulation results. The results indicate that the disposal capacity of hydrocyclone subjected to the rotation wall can be more flexible than that with no-rotating wall, the scope of best disposal capacity gradually enlarges with the increase of rotation speed of wall. Appropriate rise of the rotation speed is favor of the separation efficiency at the steady flowrate, however the increase of the flowrate and rotation speed induces the growth of the hydrocyclone’s pressure drop correspondingly to some extent.

2014 ◽  
Vol 933 ◽  
pp. 250-254 ◽  
Author(s):  
Yue Juan Yan ◽  
Zun Ce Wang ◽  
Yan Xu Shang ◽  
Sen Li ◽  
Yan Xu

A new style single outlet downhole hydrocyclone desander with spiral deflectors was designed according to the working characters of downhole desander, which combined hydrocyclone separation and sediment separation. Numerical simulation was conducted to analysis effect of produced liquid viscosity on flow characteristics and separating property. The results show that the tangential velocity of hydrocyclone desander decreases rapidly and the axial velocity and radial velocity of hydrocyclone desander changes slightly when the produced liquid viscosity changes in the range of 1.5mPa·s ~ 30mPa·s. Separation efficiency drops sharply and pressure drop decreases slightly with the increasing of produced liquid viscosity.


2013 ◽  
Vol 465-466 ◽  
pp. 109-113 ◽  
Author(s):  
Bukhari Manshoor ◽  
Izzuddin Zaman ◽  
Mohamad Jaat ◽  
Amir Khalid

In this paper, steady state, incompressible, swirling turbulent flow through circle grid fractal plate has been simulated. The aim of the simulation is to investigate an effect of the circle grid fractal plate thickness in order to reduce swirling due to swirl disturbance in pipe flow. The simulation and analysis were carried out using finite volume CFD solver ANSYS CFX. Three different thickness of fractal plate were used in the simulation work with the thickness of 1 mm, 3 mm and 6 mm. The simulation results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003 and turbulent model used, standard k-ε model gave the best agreement with the ISO pressure drop correlation. The effects of circle grid fractal plate thickness on the flow characteristics which are swirl angle and tangential velocity have been investigated as well.


2015 ◽  
Vol 8 (1) ◽  
pp. 257-261 ◽  
Author(s):  
Xu Yan ◽  
Yuan Lin ◽  
Wang Zunce ◽  
Li Sen ◽  
Zhang Jinglong ◽  
...  

In the process of downhole oil-water separation, the traditional liquid-liquid separation hydrocyclone (LLSH) is used in conjunction with screw pumps, which makes the hydrocyclone rotating around its own axis. The rotation of wall of hydrocyclone affects its internal flow characteristics and separation properties directly. The orthogonal experiment of the downhole oil-water separation hydrocyclone (DOWSH) is designed to analyze the effect of flowrate, rotating speed and split ratio on separation efficiency and pressure drop, The primary and secondary factors of operation parameters have been studied, and the optimum condition and reasonable working range of DOWSH have been obtained. It provides reliable basis for process of practical application of DOWSH􀀁so as to guide the production.


Author(s):  
Yingjiao Hu ◽  
Songtao Wang

Reviewed the historical development of the supersonic axial flow compressor, and gave an outlook for its future developments and research orientations. According to the internal flow characteristics of the conventional supersonic axial flow compressors, put forward a high load of supersonic axial compressor aerodynamic design principle. A preliminary design verification of the principle has been carried. The 3D viscous numerical simulation results show that, under the tip tangential speed 360m / s, has achieved a stage pressure ratio 2.3 with efficiency 86.5%. In addition, considering the rotor under impulse condition can get the maximum rotor total pressure ratio with high efficiency, a design principle has also been put forward to solve the high entrance Mach number problem of the downstream stator. But the numerical simulation results show that the multi-shock structure does not have any advantages to reduce the stator losses.


Author(s):  
Z Y Yang ◽  
G H Priestman ◽  
H F Boysan

A finite difference computer code has been used to predict highly swirling confined incompressible turbulent flow in vortex throttles. As turbulence can become highly anistropic in such flow cases, both the widely used two-equation k-ɛ model and a Reynolds stress model have been used. The results have been compared with basic experimental data and the predicted flow structure within the throttles is related to the main design parameters. It has been found that the pressure drop across the vortex throttles occurs mainly through the axial port by dissipation of the high tangential velocity. Energy loss in the vortex chamber tends to reduce the vortex strength, lowering the tangential velocity and consequently reducing the pressure drop.


2012 ◽  
Vol 184-185 ◽  
pp. 341-347
Author(s):  
Cai Jin Wu ◽  
Zheng Fei Ma ◽  
Yong Yang

The three-dimension flow field and the separation efficiency of the inclined cut-in double-inlet cyclone were simulated numerically with Reynolds Stress Model (RSM). Numerical results show that the flow field nonsymmetry is improved in the inclined cut-in double-inlet cyclone and the swirl in the flow field was decreased greatly compared to that in the single-inlet cyclone. With the increase of inclined angle, both the tangential velocity and the axial velocity first increase and then decrease, reaching a peak at inclined 12 ° angle and at inclined 10 ° angle, respectively. The pressure drop in the inclined cut-in double-inlet cyclone increases first and then decreases with the increase of inclined angle, reaching a maximum far lower than that in the single-inlet cyclone, while the change of the radial velocity is not obvious. The separation efficiency of the inclined cut-in double-inlet cyclone could be effectively improved and the optimum inclined angle is 10 °.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Lixin Zhao ◽  
Feng Li ◽  
Zhanzhao Ma ◽  
Yanqing Hu

Characteristics of dynamic hydrocyclones are introduced. The advantages of dynamic hydrocyclones, such as wider applicable flowrate range, smaller cut size, etc., are analyzed compared with normally used static hydrocyclones. By analyzing the inside velocity field distributions, the reason why dynamic hydrocyclones have higher efficiency than static ones is further described. Laboratory experiments and field tests of dynamic hydrocyclones were carried out. Relationships of flowrate, outer shell rotation speed, and split ratio with pressure were studied. Pressure and pressure drop inside hydrocyclones were measured and analyzed. The effect of main operating parameters, such as split ratio and rotation speed, on hydrocyclonic separation performance was also studied. It is shown that the rise of split ratio is beneficial for enhancing the separation efficiency, but the split ratio must be controlled in an appropriate range so as to obtain satisfactory separation results. The increase of rotation speed is helpful for the forming of an oil core inside the dynamic hydrocyclone, but the vibration phenomenon should also be avoided. Field tests, as anticipated, indicated satisfactory results.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Sajed Naiemi Dizajyekan ◽  
Gholamhossein Shahgholi ◽  
Adel Rezvanivand Fanaei ◽  
Vahid Rostampour ◽  
Vali Rasooli Sharabiani ◽  
...  

Cyclone is often used in the Industry due to its low maintenance costs, simple design, and ease of operation. This work presents both experimental and simulation evaluation on the effect of inlet velocity and mass flow rate on the performance of a wheat conveying cyclone. According to the great importance of the pressure drop and separation efficiency on the separation phenomenon in the cyclone, a comprehensive study has been conducted in this regard. A computational fluid dynamics (CFD) simulation was realized using a Reynolds stress turbulence model, and particle-air interactions were modeled using a discrete phase model. The result showed a good agreement between the measured value and CFD simulation on the pressure drop and tangential velocity with a maximum deviation of 6.8%. It was found that the separation efficiency increased with inlet velocity up to 16 m s−1 but decreased slightly at a velocity of 20 m s−1. The pressure drop increased proportionally with inlet velocity. However, optimum performance with the highest separation efficiency (99%) and acceptable pressure drop (416 Pa) was achieved at the inlet velocity of 16 m s−1 and mass flow rate of 0.01 kg s−1.


2005 ◽  
Vol 128 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Young-Do Choi ◽  
Junichi Kurokawa ◽  
Jun Matsui

In very low specific speed range (ns<0.25), the efficiency of the centrifugal pump designed by the conventional method becomes remarkably low. Therefore, positive-displacement pumps have been widely used for long. However, the positive-displacement pumps remain associated with problems such as noise and vibration and they require high manufacturing precision. Since the recently used centrifugal pumps are becoming higher in rotational speed and smaller in size, there appear to be many expectations to develop a new centrifugal pump with high performance in the very low specific speed range. The purpose of this study is to investigate the internal flow characteristics and its influence on the performance of a very low specific speed centrifugal pump. The results show that large reverse flow at the semi-open impeller outlet decreases absolute tangential velocity considerably which in turn decreases the pumping head.


Sign in / Sign up

Export Citation Format

Share Document