mutational pressure
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2282
Author(s):  
Kankan Yang ◽  
Menghuan Zhang ◽  
Qi Liu ◽  
Yingli Cao ◽  
Wuyin Zhang ◽  
...  

Porcine circovirus-like virus (PCLV) is a type of circular Rep-encoding single-stranded DNA virus and may be associated with the development of diarrheal symptoms in pigs. In this study, we retrospectively analyzed three years of past cases in Anhui, China, and reported a case of hemorrhagic enteritis and death in a pregnant sow possibly caused by PCLV. In addition, we analyzed the evolutionary characteristics of PCLV and found that mutation, recombination and selective pressure all played an important role in the evolution of PCLV. We identified N15D and T17S as well as L56T, T58R, K59Q, M62R, L75I and R190K mutations in two different branches, and we noted recombination events in the Rep of a group of Chinese strains. Analysis of selection pressure revealed that PCLV gained more positive selection, indicating that the virus is in a continuous evolutionary state. The PR2 plot, ENC-plot and neutrality analysis showed a greater role of natural selection than that of mutational pressure in the formation of codon usage patterns. This study is the first to identify PCLV in sows with hemorrhagic dysentery and death, and it provides new epidemiological information on PCLV infection in pigs in China.


2021 ◽  
Author(s):  
Melissa Franco ◽  
Zoe Fleischmann ◽  
Sofia Annis ◽  
Konstantin Khrapko ◽  
Jonathan L. Tilly ◽  
...  

The resilience of the mitochondrial genome to a high mutational pressure depends, in part, on purifying selection against detrimental mutations in the germline. It is crucial to understand the mechanisms of this process. Recently, Floros et al. concluded that much of the purifying selection takes place during the proliferation of primordial germ cells (PGCs) because, according to their analysis, the synonymity of mutations in late PGCs was seemingly increased compared to those in early PGCs. We re-analyzed the Floros et al. mutational data and discovered a high proportion of sequence variants that are not true mutations, but originate from NUMTs, the latter of which are segments of mitochondrial DNA (mtDNA) inserted into nuclear DNA, up to millions of years ago. This is a well-known artifact in mtDNA mutational analysis. Removal of these artifacts from the Floros et al. dataset abolishes the reported effect of purifying selection in PGCs. We therefore conclude that the mechanism of germline selection of mtDNA mutations remains open for debate, and more research is needed to fully elucidate the timing and nature of this process.


Author(s):  
Tatyana Tikhomirova ◽  
Maxim Matyunin ◽  
Mikhail Lobanov ◽  
Oxana Galzitskaya

Chaperonin Hsp60, as a protein found in all organisms, is of great interest in medicine, since it is present in many tissues and can be used both as a drug and as an object of targeted therapy. Hence, Hsp60 deserves a fundamental comparative analysis to assess its evolutionary characteristics. It was found that the percent identity of Hsp60 amino acid sequences both within and between phyla was not high enough to identify Hsp60s as highly conserved proteins. In turn, their amino acid composition remained relatively constant. At the same time, the analysis of the nucleotide sequences showed that GC content in the Hsp60 genes was comparable to or greater than the genomic values, which may indicate a high resistance to mutations due to tight control of the nucleotide composition by DNA repair systems. Natural selection plays a dominant role in the evolution of Hsp60 genes. The degree of mutational pressure affecting the Hsp60 genes is quite low, and its direction does not depend on taxonomy. Interestingly, for the Hsp60 genes from Chordata, Arthropoda, and Proteobacteria the exact direction of mutational pressure could not be determined. However, upon further division into classes, it was found that the direction of the mutational pressure for Hsp60 genes from Fish differs from that for other chordates. The direction of the mutational pressure affects the synonymous codon usage bias. The number of high and low represented codons increases with increasing GC content, which can improve codon usage.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2357
Author(s):  
Dmitrii S. Bug ◽  
Artem V. Tishkov ◽  
Ivan S. Moiseev ◽  
Yuri B. Porozov ◽  
Natalia V. Petukhova

Myelodysplastic syndrome (MDS) refers to a heterogeneous group of closely related clonal hematopoietic disorders, which are characterized by accumulation of somatic mutations. The acquired mutation burden is suggested to define the pathway and consequent phenotype of the pathology. Recent studies have called attention to the role of miRNA biogenesis genes in MDS progression; in particular, the mutational pressure of the DROSHA gene was determined. Therefore, this highlights the importance of studying the impact of all collected missense mutations found within the DROSHA gene in oncohematology that might affect the functionality of the protein. In this study, the selected mutations were extensively examined by computational screening, and the most deleterious were subjected to a further molecular dynamic simulation in order to uncover the molecular mechanism of the structural damage to the protein altering its biological function. The most significant effect was found for variants I625K, L1047S, and H1170D, presumably affecting the endonuclease activity of DROSHA. Such alterations arisen during MDS progression should be taken into consideration as evoking certain clinical traits in the malignifying clonal evolution.


2021 ◽  
Vol 15 (3) ◽  
pp. 347-352
Author(s):  
Caixia Liu ◽  
Zhilong He ◽  
Yongzhong Chen ◽  
Wei Tang ◽  
Li Ma ◽  
...  

Camellia oleifera is an essential oil woody plant. The development of the camellia industry can relieve the a China’s pressure of importing edible oil. However, there are few studies on the codon usage bias (CUB) in C. oleifera genes. In this study, the codon usage patterns were analyzed by 35,178 reconstructed genes from the C. oleifera transcriptome. The mean GC and GC3 content of all transcripts was 51.14% and 55.43% respectively. A total of 18 optimal codons were identified, 15 of them ending with A or U. Which indicated the use of A/U codons was high frequency. Furthermore, the natural selection and mutational pressure, both influenced CUB in C. oleifera, however the natural selection was the most deciding factor. The nucleotide excretion of C. oleifera genome is rich. C. oleifera prefers A/U ending codons, and nature selection is one of the most important factors affecting CUB. This study will lay a theoretical foundation for the research of molecular evolution and genetic engineering in C. oleifera.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009560
Author(s):  
Maxwell Shapiro ◽  
Laurie T. Krug ◽  
Thomas MacCarthy

Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.


Author(s):  
M. A. Yermalovich ◽  
V. V. Khrustalev ◽  
T. A. Khrustaleva ◽  
V. V. Poboinev ◽  
E. O. Samoilovich

Two genovariants (1a1 and 1a2) are distinguished among Human parvovirus B19 (B19P) of subgenotype 1a, of which 1a2 was predominantly distributed during the incidence rise in Belarus. The aim of this study was a comparative analysis of the amino acid variability and of the mutational pressure directions in different parts of the genome between genovariants 1a1 and 1a2.The analysis of the consensus amino acid sequences of two genovariants and the three-dimensional structure models of protein fragments was carried out. In total, two unique amino acid substitutions in the main non-structural protein NS1 of 1a2 were found (I181M and E114G), one of which E114G is close to the DNA-binding domain (OBD) responsible for attachment to the replication origin site and can affect the rate of virus replication and transcription. Three unique amino acid substitutions were found in the structural polypeptide VP of 1a2: V30L, S98N, and N533S. Two of them are located in the most immunogenic region VP1u and can contribute to the escape from immune response. The investigation of the mutational pressure direction revealed a decrease in the frequency of G to T transversions in the second reading frame of 1a2, which reflects a higher transcription rate as a result of amino acid substitution in the OBD protein.The differences revealed between the genetic variants of subgenotype 1a B19P both in the antigenic sites and in the replication and transcription system can provide an increased “fitness” for the genetic variant 1a2 and explain its predominant distribution during the incidence rise.


Author(s):  
Khrustalev Vladislav Victorovich ◽  
Giri Rajanish ◽  
Khrustaleva Tatyana Aleksandrovna ◽  
Kapuganti Shivani Krishna ◽  
Stojarov Aleksander Nicolaevich ◽  
...  

AbstractWithin four months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in the ORF1 of the virus isolated from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of nonsynonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerated sites towards uracil residues is seen in ORF1 of all the studied coronaviruses. A more substantial mutational U pressure is observed in ORF1a than in ORF1b owing to the translation of ORF1ab via programmed ribosomal frameshifting. Unlike other nucleotide mutations, mutational U pressure caused by cytosine deamination, mostly occurring in the RNA-plus strand, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the direction of mutational pressure during translation of viral RNA-plus strands has implications for vaccine and nucleoside analogue development for treating covid-19 and other coronavirus infections.


Genome ◽  
2020 ◽  
Vol 63 (4) ◽  
pp. 215-224 ◽  
Author(s):  
Aasim Majeed ◽  
Harpreet Kaur ◽  
Pankaj Bhardwaj

Unequal utilization of synonymous codons is a well-known phenomenon among living organisms. This phenomenon plays a major role in the enhancement of the accuracy and efficiency of translation. Gymnosperms are rarely paid attention in this aspect. Understanding the degree of and determining the forces influencing codon usage bias (CUB) in Taxus contorta, an endangered Himalayan gymnosperm, will prove useful in interpreting the evolutionary characteristics of this species. Using RNAseq data, 93 790 assembled transcripts were clustered into 32 701 unigenes. Around 13 061 full-length sequences were utilized for the analysis of CUB. Compositional properties showed that GC-content ranged from 28.76% to 65.22%, with an average value of 44.28%, suggesting an AT-rich genome. The mean effective number of codons (ENC) value revealed that CUB is not strong in T. contorta. The preferred codons tended to be A/U ending, whereas the avoided codons tended to be G/C ending. A P2 index of 0.54 and a Mutation Responsive Index (MRI) value of –0.02 in addition to the results revealed by the neutrality, ENC, and parity plots showed that natural selection is a predominating factor governing CUB. Mutational pressure, gene length, hydropathiciy, aromaticity, and nucleotide composition influence CUB weakly.


Sign in / Sign up

Export Citation Format

Share Document