scholarly journals Research on Roll Stabilizing Based on Energy Optimization for Autonomous Surface Vehicle

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hongjian Wang ◽  
Linlin Wang ◽  
Lixin Pan

Considering the case of ASV (autonomous surface vehicle) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Control system design is based on GPC (general predictive control) theory and working principle of zero-speed fin stabilizer. Coupling horizontal motion model of ASV is decoupled, and an equivalent transfer function of roll motion is obtained and transformed into a discrete difference equation through inverse Laplace transformation and Euler approximation. Finally, predictive model of GPC, namely, the difference equation of roll motion, is given. GPC algorithm of ASV roll motion is derived from performance index based on roll stabilizing performance and energy consumption used for driving fin stabilizer. In allusion to time-variant parameters in roll motion model, recursive least square method is adopted for parameter estimation. Simulation results of ASV roll motion control show better stabilizing performance and minimized energy consumption improved by self-adaptive GPC.

2021 ◽  
Vol 2083 (3) ◽  
pp. 032043
Author(s):  
Mengshuang Fu

Abstract With the rapid economic development, the urban space environment is becoming more and more complex, various accidents and disasters occur frequently, and safety risks are increasing. The rescue tasks involved in the fire brigade are showing a trend of diversification and complexity. The fire rescue team always puts the people first and insists on serving the people wholeheartedly. It is the guardian of maintaining social stability in our country and safeguarding the health and safety of people’s lives and property and various disaster affairs. The society needs the participation in the fire rescue team. Aiming at the fire rescue problem, this paper uses the fire rescue call data onto 2016 to 2019 to predict the number of fire rescues / rescued calls based on the difference equation to improve the rescue efficiency of the fire brigade. Taking into account the impact on the domestic epidemiced in 2020 on people’s lives, the adjustment value was introduced to adjust part of the alarm data onto 2020 to ensure the accuracy and reliability of the data. Finally, the second-order difference equation is used to predict the alarm data onto 2021 through the least square method, which verifies the accuracy of the model.


Robotica ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 743-753 ◽  
Author(s):  
Soo Jeon

SUMMARYAutonomous operation of mechanical systems often requires the ability to detect and locate a particular phenomenon occurring in the surrounding environment. Being implemented to articulated manipulation, such a capability may realize a wide range of applications in autonomous maintenance and repair. This paper presents the sensor-driven task space control of an end-effector that combines the field estimation and the target tracking in an unknown spatial field of interest. The radial basis function network is adopted to model spatial distribution of an environmental phenomenon as a scalar field. Their weight parameters are estimated by a recursive least square method using collective measurements from the on-board sensors mounted to the manipulator. Then the asymptotic source tracking has been achieved by the control law based on the gradient of the estimated field. A new singularity tolerant scheme has been suggested to command the task space control law despite singular configurations. Simulation results using the three-link planar robot and the 6-revolute elbow manipulator are presented to validate the main ideas.


2016 ◽  
Vol 37 (4) ◽  
pp. 73-88 ◽  
Author(s):  
Magda Joachimiak ◽  
Andrzej Frąckowiak ◽  
Michał Ciałkowski

AbstractA direct problem and an inverse problem for the Laplace’s equation was solved in this paper. Solution to the direct problem in a rectangle was sought in a form of finite linear combinations of Chebyshev polynomials. Calculations were made for a grid consisting of Chebyshev nodes, what allows us to use orthogonal properties of Chebyshev polynomials. Temperature distributions on the boundary for the inverse problem were determined using minimization of the functional being the measure of the difference between the measured and calculated values of temperature (boundary inverse problem). For the quasi-Cauchy problem, the distance between set values of temperature and heat flux on the boundary was minimized using the least square method. Influence of the value of random disturbance to the temperature measurement, of measurement points (distance from the boundary, where the temperature is not known) arrangement as well as of the thermocouple installation error on the stability of the inverse problem was analyzed.


2011 ◽  
Vol 317-319 ◽  
pp. 1960-1963
Author(s):  
Li Bing Zhang ◽  
Ting Wu

This paper presents a technique for the position servo system of numerical control (NC) machine tool by utilizing the optimal quadratic controller. The mathematical model of the position servo control system is structured, which of the plant model is identified by making use of recursive least square method. The fundamental method of designing the optimal quadratic controller is proposed. Simulation of the optimal quadratic controller and PID controller are implemented by using MATLAB. The results of simulation show that the proposed control method of positional servo control system has better dynamic characteristics and better steady performance.


2020 ◽  
Vol 15 (6) ◽  
pp. 700-706
Author(s):  
Yifan Zhao ◽  
Mengyu Wang ◽  
Kai Wang

Due to its characteristics of using clean electric energy and bringing no damage to the environment, electric vehicles (EVs) have become a new developmental direction for the automotive industry. Its reliability issues have also attracted the attention of experts and professionals. In the field of automotive power control, from the perspective of motor control, this study uses the photoelectric sensors (PSs) as the research objects and elaborates on the measurement principles of motor speed with PSs. Meanwhile, a diagnosis scheme is proposed for various faults in the measurement. Among them, the measurement speed is converted by the photoelectric signal, and the measured waveform is amplified. In the fault detection process, the Radial Basis Function (RBF) artificial neural network (ANN) is analyzed. By using this method, the difference in the motor speed detected by the sensor is calculated to determine the cause of the failure. The test uses the least-square method to compare the tested motor speed with the actual motor speed. The results show that PSs can measure the motor speed of EVs. As for the motor failures, the mean square errors (MSEs) of motor speeds generated by different faults are compared to determine the fault points according to the speed changes. In addition, the cause of motor failure can be determined by the real-time calculation of the speed differences. The above tests fully prove the effectiveness of measuring the speed of electric motors by PSs; therefore, PSs have broad application prospects in vehicle power control systems.


2012 ◽  
Vol 479-481 ◽  
pp. 688-693
Author(s):  
Zi Ying Wu ◽  
Kun Shi

In this paper a new time varying multivariate Prony (TVM-Prony) method is put forward to identify modal parameters of time varying (TV) multiple-degree-of-freedom systems from measured vibration responses. The proposed method is based on the classical Prony method that is often used to identify modal parameters of linear time invariant systems. The main advantage of the propose approach is that it can analyze multi-dimensional nonstationary signals simultaneously. A modified recursive least square method based on the traditional one is presented to determine the TV coefficient matrices of the multivariate parametric model established in the proposed method. The efficiency and accuracy of the identification approach is demonstrated by a numerical example, in which a TV mass-string system with three-degree-of-freedom is investigated. Satisfied results are obtained.


Sign in / Sign up

Export Citation Format

Share Document