scholarly journals Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chen-Ching Ting ◽  
Chien-Chih Chen

Heat pipe with discrete heat transfer property is often called thermal superconductor because it has extremely large thermal conductivity. This special heat transfer property is destroyed by integrating cooling apparatus and further reducing the cooling power of a heat pipe cooler. This paper experimentally studied the heat transfer property of heat pipe influenced by integrated cooling apparatus. To simplify the investigating process, a home-made square heat pipe with the dimensions of L×W×H=10×10×100 mm3 was built with two pieces of copper plates and two pieces of glass plates face to face, respectively. The two pieces of copper plates were constructed with inside walls of capillary structure and the two pieces of glasses were with antifog inside walls for observing the inner phenomenon. Moreover, isothermal circulating cooling water was applied outside the heat pipe instead of cooling fin. The results show that heat vapor in the heat pipe is condensed earlier and cannot reach the remote section of condenser. In other words, the heat transfer property of heat pipe is destroyed by integrating cooling water. This phenomenon causes the unfavorable cooling power of the heat pipe cooler.

Author(s):  
Chien-Chih Chen ◽  
Chen-Ching Ting

This article presents significant experimental data about the coaxial dual-pipe heat pipe which is new developed for applications of the heat pipe cooler in our CCT laboratory. It’s well known that heat pipe integrated with cooling plates has changed the heat transfer property of the heat pipe to be similar to copper pipe, where the heat transfer property of the bare heat pipe is discrete and the copper pipe is continuous. The integrated cooling plates cause the original heat transfer property of the heat pipe to be destroyed. For recovery of the original heat transfer property of the heat pipe in a heat pipe cooler, the coaxial dual-pipe heat pipe built a coaxial pipe inside the heat pipe in the thermal insulating section to avoid the heat of vapor being earlier taken away in the thermal insulating section. Experimental study in this work first built a home-made square coaxial dual-pipe heat pipe integrated with outside isothermal cycling cooling water. The home-made square coaxial dual-pipe heat pipe has an observation window and is convenient to observe the change of two-phase flow inside the heat pipe influenced by the outside cooling water. The results show that the new developed dual-pipe heat pipe cooler has kept the original heat transfer property of the bare heat pipe and therefore increases its cooling efficiency clearly.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Chen-Ching Ting ◽  
Chien-Chih Chen

This article presents significant experimental data about the coaxial dual-pipe heat pipe which is invented by our CCT laboratory. The coaxial dual-pipe heat pipe is built-in an inner pipe in the adiabatic section of a common heat pipe. A common heat pipe is composed of three sections: the evaporator section at the one end; the condenser section at the other end; and the adiabatic section in between. The vapor and the liquid phases of the working fluid flow in opposite directions through the core and the wick, respectively. This special heat transfer behavior causes a common heat pipe to yield the discrete heat transfer property. In process, the vapor directly brings large amounts of heat from heat source and rapidly flows through the adiabatic section to the condenser section. This intelligent heat transfer technique lets the heat pipe yield extremely large thermal conductivity. Unfortunately, a heat pipe integrated with cooling fin in the adiabatic section has changed its original heat transfer property. The integrated cooling fin in the adiabatic section has in advance taken heat of the vapor away and caused the vapor to be condensed in the adiabatic section. Therefore, the vapor cannot reach the condenser section and the condenser section hence loses its cooling capability. In other words, the effective cooling length of a common heat pipe which is integrated with cooling fin in the adiabatic section is shortened. The coaxial dual-pipe heat pipe is built-in an inner pipe in the adiabatic section of a common heat pipe to avoid heat of the vapor to be earlier taken away and even condensed in the adiabatic section. Experimental study in this work first built a home-made square coaxial dual-pipe heat pipe integrated with outside isothermal cycling cooling water as the coaxial dual-pipe heat pipe cooler. The home-made square coaxial dual-pipe heat pipe has an observation window. It is convenient to observe change of the two-phase flow inside the heat pipe influenced by the outside cooling water. The results show that the new developed coaxial dual-pipe heat pipe cooler has kept the original heat transfer property of the bare heat pipe. The vapor has reached the condenser section.


2011 ◽  
Vol 354-355 ◽  
pp. 1301-1304 ◽  
Author(s):  
Xun Wang ◽  
Xin Xin Mao ◽  
Lei Wang ◽  
Tong Han ◽  
Cheng Si Yang

Combined with the existing research results, the heat transfer property of Pulsating Heat Pipe (PHP) was analyzed on the basis of experimental data processing in multi-operating conditions. PHP could self-repair when heat transfer was deteriorated, and the operating temperature continued to rise with the increased heating power during the operation. This study would contribute to the safe and effective operating; moreover, it could lay foundations for the fundamental investigation of PHP.


2012 ◽  
Vol 22 (10) ◽  
pp. 531-538 ◽  
Author(s):  
Chan Ki Youn ◽  
Hyung Mi Lim ◽  
Sujin Cha ◽  
Dae Sung Kim ◽  
Seung-Ho Lee

2016 ◽  
Vol 861 ◽  
pp. 401-408
Author(s):  
Lucie Horká ◽  
Jan Weyr

This study is aimed at parametric analysis of floor cooling. Impact of several design parameters such as air temperature, temperature of cooling water, distance of cooling pipes, thickness and thermal conductivity of top layer on total heat transfer of cooling floor is studied. The issue is solved by steady-state 2D numerical simulation of heat transfer to the floor construction. These parametric simulations are performed in software CalA. Impact of variable input parameters on total heat transfer is observed. Results of parametric analysis are displayed in a nomogram. This nomogram is useful for faster designing of floor cooling.


2011 ◽  
Vol 311-313 ◽  
pp. 1953-1956
Author(s):  
Jing Fu Jia ◽  
Wei He

To choose the suitable heat insulating material for refrigerated cargo hold shipboard of fishing vessel, a steady state three-dimensional mathematical model of heat transfer is developed in this paper. The heat-transfer model is simplified reasonably in order to facilitate analyzing and solving. After defining the boundary conditions of the model according to the heat-transfer process of the shipboard, numerical simulations with different heat insulating material are performed using computational fluid dynamics (CFD) software PHOENICS. The obtained temperature distributions of the model in each case are analyzed. The suitable one is pointed out according to the degree of influence of the heat insulating material on heat-transfer property of the shipboard.


Author(s):  
Qingshan He ◽  
Yucan Fu ◽  
Jiajia Chen ◽  
Wei Zhang

The use of fluid in grinding enhances heat exchange at the contact zone and reduces grinding temperature. However, the massive use of fluid can cause negative influences on environment and machining cost. In this paper, a novel method of reducing grinding temperature based on heat pipe technology is proposed. One new heat pipe grinding wheel and its heat transfer principle are briefly introduced. A heat transfer mathematical model is established to calculate equivalent thermal conductivity of heat pipe grinding wheel. Compared with the wheel without heat pipe, heat transfer effect of heat pipe grinding wheel is presented, and the influences of heat flux input, cooling condition, wheel speed, and liquid film thickness on heat transfer performance are investigated. Furthermore, dry grinding experiments with two different wheels are conducted to verify the cooling effectiveness on grinding temperature. The results show that thermal conductivity of the wheel with heat pipe can be greatly improved compared to the one without heat pipe; heat transfer performance of heat pipe grinding wheel can change with different grinding conditions; meanwhile, grinding temperatures can be significantly decreased by 50% in dry grinding compared with the wheel without heat pipe.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Nannan Zhao ◽  
Dianli Zhao ◽  
H. B. Ma

This paper investigates the ultrasonic sound effect on oscillating motion and heat transfer in an oscillating heat pipe (OHP). The ultrasonic sound produced by electrically controlled piezoelectric ceramics is used to generate and maintain the oscillating motion and thereby enhance heat transfer. The results demonstrate that when an ultrasonic sound with a total electric power of 4.48 mW is added, the input power needed to start the oscillating motion can be reduced from 30 W to 18 W and the effective thermal conductivity is increased from 672.8 W/mK to 1254.7 W/mK.


Sign in / Sign up

Export Citation Format

Share Document