scholarly journals Computational Analysis of Propulsion Performance of Modified Pitching Motion Airfoils in Laminar Flow

2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Yonghui Xie ◽  
Kun Lu ◽  
Di Zhang ◽  
Gongnan Xie

The thrust generation performance of airfoils with modified pitching motion was investigated by computational fluid dynamics (CFD) modeling two-dimensional laminar flow at Reynolds number of 104. The effect of shift distance of the pitch axis outside the chord line(R), reduced frequency(k), pitching amplitude(θ), pitching profile, and airfoil shape (airfoil thickness and camber) on the thrust generated and efficiency were studied. The results reveal that the increase inRandkleads to an enhancement in thrust generation and a decrease in propulsive efficiency. Besides, there exists an optimal range ofθfor the maximum thrust and the increasingθinduces a rapid decrease in propulsive efficiency. Six adjustable parameters(K)were employed to realize various nonsinusoidal pitching profiles. An increase inKresults in more thrust generated at the cost of decreased propulsive efficiency. The investigation of the airfoil shape effect reveals that there exists an optimal range of airfoil thickness for the best propulsion performance and that the vortex structure is strongly influenced by the airfoil thickness, while varying the camber or camber location of airfoil sections offers no benefit in thrust generation over symmetric airfoil sections.

2013 ◽  
Vol 312 ◽  
pp. 235-238
Author(s):  
Ji Gao ◽  
Rui Shan Yuan ◽  
Ming Hui Zhang ◽  
Yong Hui Xie

In this paper, the effects of angle of attack, camber and camber location on propulsion performance of flapping airfoils undergoing plunging motion were numerically studied at Re=20000 and h=0.175. The unsteady incompressible viscous flow around four different airfoil sections was simulated applying the dynamic mesh. The results show that the time averaged thrust coefficient CTmean and propulsive efficiency η of the symmetric airfoil decrease with the increasing angle of attack, and the variation of CTmean is more obvious than that of CPmean. Both CTmean and η for NACA airfoils studied in this paper decrease with the increasing camber and the difference between the propulsion performances of different airfoils is not obvious, and the thrust generation and power of various NACA airfoils gradually increase during the downstroke and decrease during the upstroke. Under the same conditions, the airfoil with a further distance between the maximum camber location and the chord of the leading edge leads to higher propulsive efficiency.


2017 ◽  
Vol 826 ◽  
pp. 781-796 ◽  
Author(s):  
R. Fernandez-Feria

The conditions that maximize the propulsive efficiency of a heaving and pitching airfoil are analysed using a novel formulation for the thrust force within the linear potential theory. Stemming from the vortical impulse theory, which correctly predicts the decay of the thrust efficiency as the inverse of reduced frequency$k$for large$k$(Fernandez-Feria,Phys. Rev. Fluids, vol. 1, 2016, 084502), the formulation is corrected here at low frequencies by adding a constant representing the viscous drag. It is shown first that the thrust coefficient and propulsive efficiency thus computed agree quite well with several sets of available experimental data, even for not so small flapping amplitudes. For a pure pitching motion, it is found that the maximum propulsion efficiency is reached for the airfoil pitching close to the three-quarter chord point from the leading edge with a relatively large reduced frequency, corresponding to a relatively low thrust coefficient. According to the theory, this efficiency peak may approach unity. For smaller$k$, other less pronounced local maxima of the propulsive efficiency are attained for pitching points ahead of the leading edge, with larger thrust coefficients. The linear theory also predicts that no thrust is generated at all for a pitching axis located between the three-quarter chord point and the trailing edge. These findings contrast with the results obtained from the classical linear thrust by Garrick, with the addition of the same quasi-static thrust, which are also computed in the paper. For a combined heaving and pitching motion, the behaviour of the propulsive efficiency in relation to the pitching axis is qualitatively similar to that found for a pure pitching motion, for given fixed values of the feathering parameter (ratio between pitching and heaving amplitudes) and of the phase shift between the pitching and heaving motions. The peak propulsive efficiency predicted by the linear theory is for an airfoil with a pitching axis close to, but ahead of, the three-quarter chord point, with a relatively large reduced frequency, a feathering parameter of approximately$0.9$and a phase shift slightly smaller than $90^{\circ }$.


1996 ◽  
Vol 199 (6) ◽  
pp. 1245-1260 ◽  
Author(s):  
H Liu ◽  
R Wassersug ◽  
K Kawachi

The hydrodynamics and undulating propulsion of tadpoles were studied using a newly developed two-dimensional computational fluid dynamics (CFD) modeling method. The mechanism of thrust generation associated with the flow patterns during swimming is discussed. Our CFD analysis shows that the kinematics of tadpoles is specifically matched to their special shape and produces a jet-stream propulsion with high propulsive efficiency, as high as that achieved by teleost fishes. Investigation of the effect of Reynolds number indicates that the Froude efficiency increases with increasing Reynolds number with no ceiling in generating the jet-stream propulsion. Further studies using tadpole- and fish-shaped models with hindlimbs added to their body profiles reveal that the tadpole shape ­ a globose head with a tapered tail and hindlimbs at the base of the tail ­ allows tadpoles, but not fish, to develop hindlimbs with very little handicap on propulsion. The shapes and kinematics of tadpoles appear to be specially adapted to the requirement of these organisms to transform into frogs.


2011 ◽  
Vol 689 ◽  
pp. 32-74 ◽  
Author(s):  
C.-K. Kang ◽  
H. Aono ◽  
C. E. S. Cesnik ◽  
W. Shyy

AbstractEffects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reynolds number regime of $O(1{0}^{3} \ensuremath{-} 1{0}^{4} )$ and the reduced frequency of $O(1)$, the added mass force, related to the acceleration of the wing, is important. Based on the order of magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-tip deformation parameter ($\gamma $) is established. The parameter depends on the density ratio, St, k, natural and flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle design and performance analysis.


2020 ◽  
Vol 10 (18) ◽  
pp. 6226
Author(s):  
Zhanfeng Qi ◽  
Lishuang Jia ◽  
Yufeng Qin ◽  
Jian Shi ◽  
Jingsheng Zhai

A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh of two-dimensional (2D) NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first investigate the propulsion performance of the flapping foil in the parameter space of reduced frequency and pitching amplitude at a uniform flow velocity. We define the time-varying freestream as a superposition of steady flow and sinusoidal pulsating flow. Then, we study the influence of time-varying flow velocity on the propulsion performance of flapping foil and note that the influence of the time-varying flow is time dependent. For one period, we find that the oscillating amplitude and the oscillating frequency coefficient of the time-varying flow have a significant influence on the propulsion performance of the flapping foil. The influence of the time-varying flow is related to the motion parameters (reduced frequency and pitching amplitude) of the flapping foil. The larger the motion parameters, the more significant the impact of propulsion performance of the flapping foil. For multiple periods, we note that the time-varying freestream has little effect on the propulsion performance of the full-active flapping foil at different pitching amplitudes and reduced frequency. In summary, we conclude that the time-varying incoming flow has little effect on the flapping propulsion performance for multiple periods. We can simplify the time-varying flow to a steady flow field to a certain extent for numerical simulation.


2012 ◽  
Vol 693 ◽  
pp. 402-432 ◽  
Author(s):  
Kourosh Shoele ◽  
Qiang Zhu

AbstractA numerical model of a ray-reinforced fin is developed to investigate the relation between its structural characteristics and its force generation capacity during flapping motion. In this two-dimensional rendition, the underlying rays are modelled as springs, and the membrane is modelled as a flexible but inextensible plate. The fin kinematics is characterized by its oscillation frequency and the phase difference between different rays (which generates a pitching motion). An immersed boundary method (IBM) is applied to solve the fluid–structure interaction problem. The focus of the current paper is on the effects of ray flexibility, especially the detailed distribution of ray stiffness, upon the capacity of thrust generation. The correlation between thrust generation and features of the surrounding flow (especially the leading edge separation) is also examined. Comparisons are made between a fin with rigid rays, a fin with identical flexible rays, and a fin with flexible rays and strengthened leading edge. It is shown that with flexible rays, the thrust production can be significantly increased, especially in cases when the phase difference between different rays is not optimized. By strengthening the leading edge, a higher propulsion efficiency is observed. This is mostly attributed to the reduction of the effective angle of attack at the leading edge, accompanied by mitigation of leading edge separation and dramatic changes in characteristics of the wake. In addition, the flexibility of the rays causes reorientation of the fluid force so that it tilts more towards the swimming direction and the thrust is thus increased.


Author(s):  
Y. L. Hao ◽  
Y.-X. Tao

A continuum model is applied to the numerical simulation of the laminar hydrodynamic and heat-transfer characteristics of suspension with phase change material (PCM) particles in a microchannel. The analytical/numerical formulation based on CFD modeling technique, and the computer code is developed. Local wall-to-suspension heat transfer coefficients are calculated by the simultaneous solution of the conservation of mass, momentum and thermal energy equations. By providing detailed information on the local behavior of the wall-to-suspension heat transfer coefficients, preliminary calculations expose that there exists a particle-depleted layer next to the wall under the laminar flow condition. It plays an important role on the heat transfer between the suspension and the wall under the laminar flow condition. The heat transfer coefficient increases and reaches a peak value in the melting region. The benefits on the enhancement of heat transfer and the reduction of wall temperature and mean temperature by employing the MCPCM particle are mainly in the melting region. The preliminary results agree very well with the experimental observations and measurement on the flow and heat transfer of microencapsulated PCM slurry in circular duct. It interprets the observation in the literature where heat transfer between the suspension and the wall is weaker in non-melting region and melted region than that between the pure fluid and the wall for laminar flow conditions.


Author(s):  
Mounir Ibrahim ◽  
Pavan Veluri ◽  
Roy Tew ◽  
David Gedeon ◽  
T. Simon

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 457
Author(s):  
Al Habib Ullah ◽  
Kristopher L. Tomek ◽  
Charles Fabijanic ◽  
Jordi Estevadeordal

An experimental investigation regarding the dynamic stall of various swept wing models with pitching motion was performed to analyze the effect of sweep on the dynamic stall. The experiments were performed on a wing with a NACA0012 airfoil section with an aspect ratio of AR = 4. The experimental study was conducted for chord-based Reynolds number Rec =2×105 and freestream Mach number Ma=0.1. First, a ‘particle image velocimetry’ (PIV) experiment was performed on the wing with three sweep angles, Λ=0o, 15o, and 30o, to obtain the flow structure at several wing spans. The results obtained at a reduced frequency showed that a laminar separation bubble forms at the leading edge of the wing during upward motion. As the upward pitching motion continues, a separation burst occurs and shifts towards the wing trailing edge. As the wing starts to pitch downward, the growing dynamic stall vortex (DSV) vortex sheds from the wing’s trailing edge. With the increasing sweep angle of the wing, the stall angle is delayed during the dynamic motion of the wing, and the presence of DSV shifts toward the wingtip. During the second stage, a ‘turbo pressure-sensitive paint’ (PSP) technique was deployed to obtain the phase average of the surface pressure patterns of the DSV at a reduced frequency, k=0.1. The phase average of pressure shows a distinct pressure map for two sweep angles, Λ=0o, 30o, and demonstrates a similar trend to that presented in the published computational studies and the experimental data obtained from the current PIV campaign.


Author(s):  
Colin Stutz ◽  
Douglas Bohl ◽  
Melissa Green

Abstract The flow around, and in the wake of, pitching airfoils has received renewed interest due to its potential for thrust production at low Reynolds numbers. Past work has centered on the flow fields generated by symmetric pitching of the airfoil. Studies investigating the effects of asymmetric motion are more limited. This work focuses on the wake patterns developed due to asymmetric pitching. Particle Image Velocimetry (PIV) is used to quantify the flow field around a NACA0012 airfoil undergoing small amplitude, high frequency asymmetric pitching. The airfoil is pitched about the quarter chord point with an amplitude of ±4° at reduced frequencies of k = 2.6–5.8 at a Rec = 12000. Pitching symmetries of 50/50, 40/60 and 30/70 are studied, where the symmetry is defined by the fraction of the cycle spent in the pitch down versus pitch up motion. The data show that for the 50/50 (symmetric) motions two alternating sign vortices, with equivalent strength, are formed as expected. The asymmetric cases show that a single vortex is formed during the “fast” portion of the pitching motion. Multiple vortices are formed during the “slow” portion of the pitching motion. The number of secondary vortices and the downstream evolution of the vortices depends on the symmetry value. In some cases they remain isolated but orbit other vortical structures, while in other cases they pair with other vortical structures, and finally when the reduced frequency and asymmetry values are high enough the vortex array shows interaction between cycles.


Sign in / Sign up

Export Citation Format

Share Document