Leading edge strengthening and the propulsion performance of flexible ray fins

2012 ◽  
Vol 693 ◽  
pp. 402-432 ◽  
Author(s):  
Kourosh Shoele ◽  
Qiang Zhu

AbstractA numerical model of a ray-reinforced fin is developed to investigate the relation between its structural characteristics and its force generation capacity during flapping motion. In this two-dimensional rendition, the underlying rays are modelled as springs, and the membrane is modelled as a flexible but inextensible plate. The fin kinematics is characterized by its oscillation frequency and the phase difference between different rays (which generates a pitching motion). An immersed boundary method (IBM) is applied to solve the fluid–structure interaction problem. The focus of the current paper is on the effects of ray flexibility, especially the detailed distribution of ray stiffness, upon the capacity of thrust generation. The correlation between thrust generation and features of the surrounding flow (especially the leading edge separation) is also examined. Comparisons are made between a fin with rigid rays, a fin with identical flexible rays, and a fin with flexible rays and strengthened leading edge. It is shown that with flexible rays, the thrust production can be significantly increased, especially in cases when the phase difference between different rays is not optimized. By strengthening the leading edge, a higher propulsion efficiency is observed. This is mostly attributed to the reduction of the effective angle of attack at the leading edge, accompanied by mitigation of leading edge separation and dramatic changes in characteristics of the wake. In addition, the flexibility of the rays causes reorientation of the fluid force so that it tilts more towards the swimming direction and the thrust is thus increased.

2013 ◽  
Vol 312 ◽  
pp. 235-238
Author(s):  
Ji Gao ◽  
Rui Shan Yuan ◽  
Ming Hui Zhang ◽  
Yong Hui Xie

In this paper, the effects of angle of attack, camber and camber location on propulsion performance of flapping airfoils undergoing plunging motion were numerically studied at Re=20000 and h=0.175. The unsteady incompressible viscous flow around four different airfoil sections was simulated applying the dynamic mesh. The results show that the time averaged thrust coefficient CTmean and propulsive efficiency η of the symmetric airfoil decrease with the increasing angle of attack, and the variation of CTmean is more obvious than that of CPmean. Both CTmean and η for NACA airfoils studied in this paper decrease with the increasing camber and the difference between the propulsion performances of different airfoils is not obvious, and the thrust generation and power of various NACA airfoils gradually increase during the downstroke and decrease during the upstroke. Under the same conditions, the airfoil with a further distance between the maximum camber location and the chord of the leading edge leads to higher propulsive efficiency.


2010 ◽  
Vol 24 (13) ◽  
pp. 1353-1356
Author(s):  
QING XIAO ◽  
WEI LIAO ◽  
HUA-SHU DOU

In this paper, numerical investigation was conducted for an oscillating NACA0012 foil combining the pitching and plunging motions. The plunging follows a sinusoidal motion while the pitching trajectory is controlled by achieving the resultant effective angle of attack (AOA) to be a harmonic cosine form. Computations were conducted over a range of the Strouhal number (St), different maximum effective AOA and different phase difference between pitching and plunging (ψ). Results show that, at higher St, significant improvement on propulsion performance has been achieved when the effective AOA profile maintains a harmonic cosine form by controlling the pitching motion of the foil.


2011 ◽  
Vol 674 ◽  
pp. 43-66 ◽  
Author(s):  
PAULO J. S. A. FERREIRA de SOUSA ◽  
JAMES J. ALLEN

We consider the efficiency of thrust-producing inextensible membranes with variable bending rigidities. The present study is a numerical investigation of the thrust generation and flow-field characteristics of a two-dimensional flapping flexible membrane, fixed at its leading edge. To study the time-dependent response of the membranes, a fluid/structure solver that couples a compact finite-difference immersed boundary method flow solver with a thin-membrane structural solver was developed. Using a body-fitted grid, external forcing to the structure is calculated from the boundary fluid dynamics. A systematic series of runs of the fluid/structure solver was performed in order to obtain a clear picture of the thrust-producing characteristics of membranes with bending rigidities ranging between EI = 5 × 10−6 and EI = 2 × 10−5 and structural mass coefficients between ρsh = 0.01 and ρsh = 0.04, for a Reynolds number of Re = 851.


2019 ◽  
Author(s):  
Laurent M. Le Page ◽  
Matthew Barrett ◽  
Sean O’Byrne ◽  
Sudhir L. Gai

2015 ◽  
Vol 767 ◽  
pp. 430-448 ◽  
Author(s):  
Daniel B. Quinn ◽  
George V. Lauder ◽  
Alexander J. Smits

AbstractExperimental gradient-based optimization is used to maximize the propulsive efficiency of a heaving and pitching flexible panel. Optimum and near-optimum conditions are studied via direct force measurements and particle image velocimetry (PIV). The net thrust and power scale predictably with the frequency and amplitude of the leading edge, but the efficiency shows a complex multimodal response. Optimum pitch and heave motions are found to produce nearly twice the efficiencies of optimum heave-only motions. Efficiency is globally optimized when (i) the Strouhal number is within an optimal range that varies weakly with amplitude and boundary conditions; (ii) the panel is actuated at a resonant frequency of the fluid–panel system; (iii) heave amplitude is tuned such that trailing-edge amplitude is maximized while the flow along the body remains attached; and (iv) the maximum pitch angle and phase lag are chosen so that the effective angle of attack is minimized. The multi-dimensionality and multi-modality of the efficiency response demonstrate that experimental optimization is well-suited for the design of flexible underwater propulsors.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


2013 ◽  
Vol 10 (2) ◽  
pp. 99-108 ◽  
Author(s):  
J. A. Esfahani ◽  
E. Barati ◽  
Hamid Reza Karbasian

In flapping underwater vehicles the propulsive performance of harmonically sinusoidal heaving and pitching foil will be degraded by some awkward changes in effective angle of attack profile, as the Strouhal number increases. This paper surveys different angle of attack profiles (Sinusoidal, Square, Sawtooth and Cosine) and considers their thrust production ability. In the wide range of Strouhal numbers, thrust production of Square profile is considerable but it has a discontinuity in heave velocity profile, in which an infinite acceleration exists. This problem poses a significant defect in control of flapping foil. A novel profile function is proposed to omit sharp changes in heave velocity and acceleration. Furthermore, an optimum profile is found for different Strouhal numbers with respect to Square angle of attack profile.DOI: http://dx.doi.org/10.3329/jname.v10i2.14229


2021 ◽  
Author(s):  
Junshi Wang ◽  
Vadim Pavlov ◽  
Zhipeng Lou ◽  
Haibo Dong

Abstract Dolphins are known for their outstanding swimming performance. However, the difference in flow physics at different speeds remains elusive. In this work, the underlying mechanisms of dolphin swimming at three speeds, 2 m/s, 5 m/s, and 8 m/s, are explored using a combined experimental and numerical approach. Using the scanned CAD model of the Atlantic white-sided dolphin (Lagenorhynchus acutus) and virtual skeleton-based surface reconstruction method, a three-dimensional high-fidelity computational model is obtained with time-varying kinematics. A sharp-interface immersed-boundary-method (IBM) based direct numerical simulation (DNS) solver is employed to calculate the corresponding thrust production, wake structure, and surface pressure at different swimming speeds. It is found that the fluke keeps its effective angle of attack at high values for about 60% of each stroke. The total pressure force coefficient along the x-axis converges as the speed increase. The flow and surface pressure analysis both show considerable differences between lower (2 m/s) and higher (5 m/s and 8 m/s) speeds. The results from this work help to bring new insight into understanding the force generation mechanisms of the highly efficient dolphin swimming and offer potential suggestions to the future designs of unmanned underwater vehicles.


1960 ◽  
Vol 64 (596) ◽  
pp. 491-493 ◽  
Author(s):  
B. J. Elle

In a recent article, H. Werlé, has described how the free spiral vortices on delta wings with leading edge separation suddenly expand if the incidence is increased beyond a critical value. His description conforms to a great extent with the results, arrived at during an English investigation of the same phenomenon (called the vortex breakdown), but the interpretations of the observations, suggested by the two sources, are different. Against this background it is felt that some further comments and some pertinent high speed observations, may be of interest.


Sign in / Sign up

Export Citation Format

Share Document