scholarly journals FxLMS Method for Suppressing In-Wheel Switched Reluctance Motor Vertical Force Based on Vehicle Active Suspension System

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Yan-yang Wang ◽  
Yi-nong Li ◽  
Wei Sun ◽  
Chao Yang ◽  
Guang-hui Xu

The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV). The analysis results suggest that SRM vertical force has a great effect on suspension performance. The direct cause for this phenomenon is that SRM vertical force is directly exerted on the wheel, which will result in great variation in tyre dynamic load and the tyre will easily jump off the ground. Furthermore, the frequency of SRM vertical force is broad which covers the suspension resonance frequencies. So it is easy to arouse suspension resonance and greatly damage suspension performance. Aiming at the new problem, FxLMS (filtered-X least mean square) controller is proposed to improve suspension performance. The FxLMS controller is based on active suspension system which can generate the controllable force to suppress the vibration caused by SRM vertical force. The conclusion shows that it is effective to take advantage of active suspensions to reduce the effect of SRM vertical force on suspension performance.

2016 ◽  
Vol 24 (5) ◽  
pp. 956-974 ◽  
Author(s):  
Jonathan Rodriguez ◽  
Paul Cranga ◽  
Simon Chesne ◽  
Luc Gaudiller

This paper considers experiments on the control of a helicopter gearbox hybrid electromagnetic suspension. As the new generation of helicopters includes variable engine revolutions per minute (RPMs) during flight, it becomes relevant to add active control to their suspension systems. Most active system performance derives directly from the controller construction, its optimization to the system controlled, and the disturbances expected. An investigation on a feedback and feedforward filtered-x least mean square (FXLMS) control applied to an active DAVI suspension has been made to optimize it in terms of narrow-band disturbance rejection. In this paper, we demonstrate the efficiency of a new hybrid active suspension by combining the advantages of two different approaches in vibration control: resonant absorbers and active suspensions. Here, a hybrid active suspension based on the passive vibration filter called DAVI is developed. The objective of this paper is to prove the relevancy of coupling a resonant vibration absorber with a control actuator in order to create an active suspension with larger bandwidth efficiency and low energy consumption. The simulations and experimentation achieved during this suspension system development support this hypothesis and illustrate the efficiency and low energy cost of this smart combination.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Kalpesh Singal ◽  
Rajesh Rajamani

Previous research has shown that a semiactive automotive suspension system can provide significant benefits compared to a passive suspension but cannot quite match the performance of a fully active system. The advantage of the semiactive system over an active system is that it consumes almost zero energy by utilizing a variable damper whose damping coefficient is changed in real time, while a fully active suspension consumes significant power for its operation. This paper explores a new zero-energy active suspension system that combines the advantages of semiactive and active suspensions by providing the performance of the active system at zero energy cost. Unlike a semiactive system in which the energy is always dissipated, the proposed system harvests and recycles energy to achieve active operation. An electrical motor-generator is used as the zero-energy actuator and a controller and energy management system are developed. An energy adaptive sky-hook gain is proposed to prevent the system from running out of energy, thereby eliminating the need to switch between passive and active systems. The results show that the system performs at least as well as a passive system for all frequencies, and is equivalent to an active system for a broad range of frequencies including both resonant frequencies.


2015 ◽  
Vol 759 ◽  
pp. 77-90 ◽  
Author(s):  
Tomasz Nabagło ◽  
Andrzej Jurkiewicz ◽  
Janusz Kowal

In the article, a new solution of a semi-active suspension system is presented. It is based on a sky-hook strategy model. This solution in 2S1 tracked platform is applied to improve body vehicle stability and driving comfort. The solution is applied in two versions of the 2S1 vehicle suspension model. First one is a basic model. This suspension is based on existing construction of the 2S1 platform suspension. It is based on torsion bars. Second one is a modified model, based on spiral torsion springs. In this model a new solution of idler mechanism is applied. It provides constant tension of the tracks. Semi-active suspensions simulations results are compared with results of models with passive versions of the suspension to highlight the improvement level. Simulations are conducted in the Yuma Proving Ground conditions. Results of all models simulations are compared and analyzed to improve stability and comfort level in conditions of the modern battlefield. Stability level is analyzed for weapon aiming tasks. Comfort level is analyzed for the vehicle crew efficiency.


2012 ◽  
Vol 229-231 ◽  
pp. 1763-1767
Author(s):  
Hua Zhu

Focusing on the nonlinear and uncertain characteristics of suspension system,a 2-DOF vehicle is regarded as the control object, sliding mode theory was used to design a sliding mode controller for the 2 DOFs vehicle semi-active suspension system,then RBF neural network was employed to optimize the sliding mode controller.The control effects of three key performance parameters of suspension, the acceleration of car body, the dynamic travel of suspension and the dynamic deflection of tire are studied under random excitation conditions.The results indicate that in comparison with the passive suspension,sliding mode semi-active control based on RBF neural network can improve suspension performance effectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yanyang Wang ◽  
Funing Yang ◽  
Fuxing Shang ◽  
Qing Xiong

This paper studies the unbalanced radial force of in-wheel switched reluctance motors effect on vehicle performance under stability condition. First, the IWM-EV vehicle model which highlights the new factors of the rotor, stator, SRM vertical force, and airgap deflection was adopted. And the vehicle comparison models were established to make a contrastive study about IWM-EV new structure effects. Then, Routh’s stability criterion method was adopted to judge the vehicle system’s stability condition. It includes two parts: characteristic polynomial of the vehicle system which is served to calculate the IWM-EV system Routh array and Routh’s stability criterion which is used to judge the vehicle system’s stability condition. The effect of the new structure on vehicle performance was further discussed under stability condition. It mainly includes two aspects: vehicle vibration mode analysis which is used to study vehicle vibration characteristics and amplitude-frequency analysis which is served to research transfer response characteristics of the vehicle system. The result shows that the new structure of IWM-EV has a negative effect on vehicle stability performance. The SRM vertical force will change vehicle stability characteristic. In some severe cases, it will even destroy IWM-EV’s stability.


Author(s):  
D. J. Purdy ◽  
D. N. Bulman

The well-established quarter car representation is used to investigate the design of an active suspension system for a racing car. The work presented is from both a practical and theoretical study. The experimental open-loop and passive responses of the suspension system are used to validate the model and estimate the level of damping within the system. A cascade control structure is used, consisting of an inner body acceleration loop and an outer ride height loop. Comparisons are made between the experimental results and those predicted by the theory. During the 1980s and early 1990s a number of Formula 1 teams developed active suspension systems to improve the performance of cars. Little detail was published about these systems because of the highly competitive nature of the application. Some of these systems were very sophisticated and successful. Because of this, speed increased considerably and because of the costs involved, the difference in performance between the lower and higher funded teams became unacceptable. For this reason, the governing body of motor sport decided to ban active suspensions from the end of the 1993 racing season. Both authors of this paper were involved with different racing teams at that time, and this paper is an introduction to the very basic philosophy behind a typical active system that was employed on a Formula 1 car.


Author(s):  
Hyeong-keun Kim ◽  
Nak Hoon Sung ◽  
Youn-sik Park

Abstract The semi-active damper idea is not new. Many previous researchers showed that a semi-active damper and an on-off type semi-active damper can each bring about almost die equivalent suspension performance as that of an active suspension system. In this work, a self-operating on-off type semi-active damper idea is devised. The advantage of the self-operating on-off type semi-active damper over the conventional semi-active damper or on-off type semi-active damper is its mechanical simplicity. The self-operating semi-active damper does not need any sensors and logic circuits for on-off control motion and brings about an identical suspension performance. In order to prove the practical applicability of the damper, two prototype dampers are designed, built and tested. As a result, the tested prototype damper shows very good agreement not only with the peak damping forces, but also with the timely self-operating on-off valve motion.


2013 ◽  
Vol 482 ◽  
pp. 150-154 ◽  
Author(s):  
Zhi Zhao Peng ◽  
Jin Qiu Zhang ◽  
Lei Zhang ◽  
Da Shan Huang

A semi-active suspension system is researched for a heavy tracked vehicle to improve its suspension performance. This is achieved through a vane magnetorheological damper (VMRD) with special magnetic circuit which may attenuate the leak of MRF from assembly gap. A innovative strategy named frequency domain control (FDC) is proposed based on a conclusion that, in the frequency domain,the influence of damping coefficient to transmissibility for different suspension performance indicators is in good consistency. FDC only requires accelerometers mounted on sprung mass, meaning low price and high reliability that the tracked vehicle requires. The experiment indicates the designed semi-active suspension system based on VMRFD has an excellent vibration suppressing ability.


2013 ◽  
Vol 62 (2) ◽  
pp. 562-572 ◽  
Author(s):  
Jiongkang Lin ◽  
Ka Wai Eric Cheng ◽  
Zhu Zhang ◽  
Norbert C. Cheung ◽  
Xiangdang Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document