scholarly journals Synthesis, Characterization, andIn VitroAnticancer Evaluation of Novel 2,5-Disubstituted 1,3,4-Oxadiazole Analogue

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Salahuddin ◽  
Avijit Mazumder ◽  
Mohammad Shaharyar

In this series, we have synthesised a new 2,5-disubstituted 1,3,4-oxadiazole in search of potential therapeutics for cancer. The anticancer activities were evaluated on a panel of 60 cell lines by the National Cancer Institute according to its own screening protocol. Out of the 24 compounds, 11 were selected and evaluated via single high dose (10−5 M). In the next phase, two compounds have been selected for five-dose assay. The compounds 3-(5-benzyl-1,3,4-oxadiazol-2-yl)quinolin-2(1H)-one18(NSC-776965) and 3-[5-(2-phenoxymethyl-benzoimidazol-1-ylmethyl)-[1,3,4]oxadiazol-2-yl]-2-p-tolyloxy-quinoline27(NSC-776971) showed mean growth percentage of 66.23 and 46.61, respectively, in one-dose assay and their GI50values ranging between 1.41–15.8 μM and 0.40–14.9 μM, respectively, in 5-dose assay.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Mohamed Jawed Ahsan ◽  
Habibullah Khalilullah ◽  
Sabina Yasmin ◽  
Surender Singh Jadav ◽  
Jeyabalan Govindasamy

In search of potential therapeutics for cancer, we described herein the synthesis, characterization, andin vitroanticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone (10) which showed mean growth percent of −28.71 in one-dose assay and GI50values between 0.0079 and 1.86 µM in 5-dose assay.


2020 ◽  
Vol 17 ◽  
Author(s):  
W. Abd El-Fattah

: In this work, 1,2,4-triazine derivatives were synthesized and evaluated for anticancer activities. Series of 1,2,4-triazine derivatives (4a, b) were prepared via the reaction of N-benzoyl glycine (1) with aromatic aldehydes in presence of fused sodium acetate and acetic anhydride to give 1,3-oxazolinone derivatives (2a, b), followed by condensation with 1-(ethoxycarbonyl) hydrazine (3) in glacial acetic acid. Compounds (4a, b) then reacted with acetic anhydride, ethyl chloroacetate and 2,4-dinitrophenyl hydrazine yielded the corresponding to N-acetyl derivatives (5a, b), N-(ethoxycarbonyl) methyl derivative (6) and 1,2-disubstituted hydrazine (7), respectively. The structures of the 1,2,4-triazine derivatives were confirmed by IR, 1H, 13C NMR, MS and elemental analyses. Anticancer activity of some 1,2,4-triazine derivatives (4-7) have been investigated. The results revealed that compounds 4a (IC50= 2.7μM), 5a (IC50= 1.5μM), and 5b (IC50= 3.9μM) show promising inhibitory growth efficacy compared to a standard antitumor drug (IC50= 4.6μM). These three compounds can be considered as potential agents against human hepatocellular carcinoma cell lines (HepG-2).


2019 ◽  
Vol 15 (5) ◽  
pp. 550-560
Author(s):  
Mateusz D. Tomczyk ◽  
Anna Byczek-Wyrostek ◽  
Klaudia Strama ◽  
Martyna Wawszków ◽  
Przemysław Kasprzycki ◽  
...  

Background: The substituted 1,8-Naphthalimides (1H-benzo[de]isoquinoline-1,3(2H)- diones) are known as DNA intercalators stabilizing DNA-Topoisomerase II complexes. This interaction disrupts the cleavage-relegation equilibrium of Topo II, resulting in formation of broken strands of DNA. Objective: To investigate the influence of type of substituents and substitution positions in 1,8- naphthalimde skeleton on the inhibition of Topoisomerase II activity. Methods: The starting 1,8-naphthalimide were prepared from acenaphthene by introduction of appropriate substituents followed by condensation with ω-hydroxylakylamines of different chain length. The substituents were introduced to 1,8-naphthalimide molecule by nucleophilic substitution of leaving groups like nitro or bromo present in 4 or 4,5- positions using the ω- hydroxylalkylamines. The bioactivity of obtained compounds was examined in model cell lines. Results: Antiproliferative activity of selected compounds against HCT 116 human colon cancer cells, human non-small cell lung cells A549 and non-tumorigenic BEAS-2B human bronchial epithelium cells was examined. Several of investigated compounds exhibit a significant activity (IC50 µM to 7 µM) against model cancer cell lines. It was demonstrated that upon treatment with concentration of 200 µM, all derivatives display Topo II inhibitory activity, which may be compared with activity of Amonafide. Conclusion: The replacement of the nitro groups in the chromophore slightly reduces its anticancer activities, whereas the presence of both nitro group and ω-hydroxylalkylamine chain resulted in seriously increased anticancer activity. Obtained compounds showed Topo II inhibitory activity, moreover, influence of the substitution pattern on the ability to inhibit Topo II activity and cancer cells proliferation was observed.


2018 ◽  
Vol 18 (8) ◽  
pp. 1184-1196 ◽  
Author(s):  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Rezk R.A. Ayyad ◽  
Khaled El-Adl ◽  
Mamdouh M. Ali ◽  
...  

Background: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. </P><P> Material and Methods: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. Results and Discussion: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. Conclusion: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4288
Author(s):  
Fernanda Malhão ◽  
Ana Catarina Macedo ◽  
Carla Costa ◽  
Eduardo Rocha ◽  
Alice Abreu Ramos

Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.


2021 ◽  
Vol 22 (8) ◽  
pp. 4265
Author(s):  
Jang Mi Han ◽  
Hong Lae Kim ◽  
Hye Jin Jung

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


2017 ◽  
Vol 98 ◽  
pp. 62-69 ◽  
Author(s):  
Vesna Tesic ◽  
Milka Perovic ◽  
Ivan Zaletel ◽  
Mirna Jovanovic ◽  
Nela Puskas ◽  
...  
Keyword(s):  

2007 ◽  
Vol 24 (Supplement 39) ◽  
pp. 176
Author(s):  
M. Docquier ◽  
V. Collet ◽  
M. De Kock ◽  
P. Lavandhomme
Keyword(s):  

2005 ◽  
Vol 49 (9) ◽  
pp. 3970-3973 ◽  
Author(s):  
Ana María Ríos ◽  
Mónica Fonseca-Aten ◽  
Asunción Mejías ◽  
Susana Chávez-Bueno ◽  
Kathy Katz ◽  
...  

ABSTRACT We evaluated the efficacy of azithromycin therapy given as a single high dose or divided over 5 days for the treatment of mild experimental Mycoplasma pneumoniae pneumonia. Although both azithromycin regimens significantly reduced quantitative cultures, lung histopathology, and pulmonary cytokines and chemokines, there were no significant differences between the two regimens.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1280
Author(s):  
Jan Mieszkowski ◽  
Andżelika Borkowska ◽  
Błażej Stankiewicz ◽  
Andrzej Kochanowicz ◽  
Bartłomiej Niespodziński ◽  
...  

Purpose: A growing number of studies indicate the importance of vitamin D supplementation for sports performance. However, the effects of a single high-dose vitamin D supplementation on ultramarathon-induced inflammation have not been investigated. We here analyzed the effect of a single high-dose vitamin D supplementation on the inflammatory marker levels in ultramarathon runners after an ultramarathon run (maximal run 240 km). Methods: In the study, 35 runners (amateurs) were assigned into two groups: single high-dose vitamin D supplementation group, administered vitamin D (150,000 IU) in vegetable oil 24 h before the start of the run (n = 16); and placebo group (n = 19). Blood was collected for analysis 24 h before, immediately after, and 24 h after the run. Results: Serum 25(OH)D levels were significantly increased after the ultramarathon in both groups. The increase was greater in the vitamin D group than in the control group. Based on post-hoc and other analyses, the increase in interleukin 6 and 10, and resistin levels immediately after the run was significantly higher in runners in the control group than that in those in the supplementation group. Leptin, oncostatin M, and metalloproteinase tissue inhibitor levels were significantly decreased in both groups after the run, regardless of the supplementation. Conclusions: Ultramarathon significantly increases the serum 25(OH)D levels. Attenuation of changes in interleukin levels upon vitamin D supplementation confirmed that vitamin D has anti-inflammatory effect on exercise-induced inflammation.


Sign in / Sign up

Export Citation Format

Share Document