scholarly journals Coptis chinensisand Myrobalan (Terminalia chebula) Can Synergistically Inhibit Inflammatory Response In Vitro and In Vivo

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Enhui Cui ◽  
Xiaoyan Zhi ◽  
Ying Chen ◽  
Yuanyuan Gao ◽  
Yunpeng Fan ◽  
...  

Objectives. To investigate the anti-inflammatory effect ofCoptis chinensisplus myrobalan (CM) in vitro and in vivo.Methods. The inflammation in mouse peritoneal macrophages was induced by lipopolysaccharide (LPS). Animal models were established by using ear swelling and paw edema of mouse induced by xylene and formaldehyde, respectively. In vitro, cytotoxicity, the phagocytosis of macrophages, the levels of nitric oxide (NO), induced nitric oxide synthase (iNOS), tumor necrosis factor-α(TNF-α), and interleukin-6 (IL-6) in cell supernatant were detected. In vivo, swelling rate and edema inhibitory rate of ear and paw were observed using CM-treated mice.Results. At 150–18.75 μg·mL−1, CM had no cytotoxicity and could significantly promote the growth and the phagocytosis of macrophages and inhibit the overproduction of NO, iNOS, TNF-α, and IL-6 in macrophages induced by LPS. In vivo, pretreatment with CM, the ear swelling, and paw edema of mice could be significantly inhibited in a dose-dependent manner, and the antiedema effect of CM at high dose was better than dexamethasone.Conclusion. Our results demonstrated thatCoptis chinensisand myrobalan possessed synergistically anti-inflammatory activities in vitro and in vivo, which indicated that CM had therapeutic potential for the prevention and treatment of inflammation-mediated diseases.

2020 ◽  
Vol 21 (16) ◽  
pp. 5700 ◽  
Author(s):  
Rianthong Phumsuay ◽  
Chawanphat Muangnoi ◽  
Peththa Wadu Dasuni Wasana ◽  
Hasriadi Hasriadi ◽  
Opa Vajragupta ◽  
...  

Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ji Young Cha ◽  
Ji Yun Jung ◽  
Jae Yup Jung ◽  
Jong Rok Lee ◽  
Il Je Cho ◽  
...  

Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2(PGE2), nitric oxide (NO), IL-6, and TNF-αinduced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWSin vitroandin vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ji Choul Ryu ◽  
Sang Mi Park ◽  
Min Hwangbo ◽  
Sung Hui Byun ◽  
Sae Kwang Ku ◽  
...  

Artemisia apiaceaHance is one of the most widely used herbs for the treatment of malaria, jaundice, and dyspeptic complaint in oriental medicine. This study investigated the effects of methanol extracts ofA. apiaceaHance (MEAH) on the induction of inducible nitric oxide synthase (iNOS) and proinflammatory mediators by lipopolysaccharide (LPS) in Raw264.7 macrophage cells and also evaluated thein vivoeffect of MEAH on carrageenan-induced paw edema in rats. MEAH treatment in Raw264.7 cells significantly decreased LPS-inducible nitric oxide production and the expression of iNOS in a concentration-dependent manner, while MEAH (up to 100 μg/mL) had no cytotoxic activity. Results from immunoblot analyses and ELISA revealed that MEAH significantly inhibited the expression of cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in LPS-activated cells. As a plausible molecular mechanism, increased degradation and phosphorylation of inhibitory-κBαand nuclear factor-κB accumulation in the nucleus by LPS were partly blocked by MEAH treatment. Finally, MEAH treatment decreased the carrageenan-induced formation of paw edema and infiltration of inflammatory cells in rats. These results demonstrate that MEAH has an anti-inflammatory therapeutic potential that may result from the inhibition of nuclear factor-κB activation, subsequently decreasing the expression of proinflammatory mediators.


Author(s):  
Urmila U. Tambewagh ◽  
Supada Rambhau Rojatkar

Objective: Objective of the present study was to carry out in vivo anti-inflammatory and in vitro antioxidant activity of methanol extract of aerial part of the Blumea eriantha DC belonging to family Asteraceae.Methods: The shade dried aerial part of B. eriantha (0.5 kg) was powdered and extracted with methanol (1.5 x 3L) at room temperature (24h x 3). After filtration combined all the three extracts and were concentrated on rotary evaporator under reduced pressure at 40 °C, thereby providing crude methanol extract which was subsequently employed for further studies. Anti-inflammatory effect was studied by carrageenan-induced paw edema model in rats at dose level 100, 200, and 400 mg/kg. Acute oral toxicity study and in vitro antioxidant potential of the extract was also studied. The in vitro antioxidant activity of methanol extract of aerial part of Blumea eriantha DC was evaluated against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and hydroxyl (OH) radicalscavenging and reducing power assays.Results: The results indicate that methanol extract of Blumea eriantha (BEME, 400 mg/kg) exhibited significant inhibition (p<0.001) of increase in paw edema at 5th h. IC50 value of BEME showed significant antioxidant activity. The extract exhibits promising free radical scavenging effect of DPPH, H2O2, OH and reducing power in a dose-dependent manner up to 100µg/ml concentration while the reference standard Ascorbic acid demonstrated more scavenging potential than the methanol extract of Blumea eriantha The methanol extract was found to be safe at the dose of 2000 mg/kg.Conclusion: The results of the experimental study confirmed that methanol extract of Blumea eriantha DC possesses significant anti-inflammatory and antioxidant activity.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Godswill Nduka Anyasor ◽  
Azeezat Adenike Okanlawon ◽  
Babafemi Ogunbiyi

Abstract Background Justicia secunda Vahl. is a medicinal plant used in ethnomedical practice as therapy to manage inflammation. Therefore, this study was designed to evaluate the anti-inflammatory activity of methanol extract of J. secunda leaves (MEJSL) using in vitro and in vivo inflammation models. Methods Seventy-percent MEJSL was prepared following standard procedure. In vitro anti-inflammatory assays were performed using heat-induced bovine serum albumin (BSA) denaturation and erythrocyte membrane stabilization assays. Carrageenan and formaldehyde induced inflammation in rat models were used to evaluate the anti-inflammatory activity of MEJSL in vivo. Diclofenac sodium was used as a reference drug. In addition, liver and kidney function assays and hematological analysis were carried out. Results Data revealed that varying concentrations of MEJSL significantly (P < 0.05) inhibited heat-induced BSA denaturation and stabilized erythrocyte membrane against hypotonicity-induced hemolysis when compared with diclofenac sodium in a concentration-dependent manner. In vivo study showed that 10 mg/kg body weight (b.w.) diclofenac sodium, 100 and 300 mg/kg b.w. MEJSL suppressed carrageenan-induced paw edema at the sixth hour by 71.14%, 83.08%, and 89.05%, respectively. Furthermore, 10 mg/kg b.w. diclofenac sodium, 100 and 300 mg/kg b.w. MEJSL inhibited formaldehyde-induced paw edema by 72.53%, 74.73%, and 76.48%, respectively. Animals treated with varying doses of MEJSL had reduced plasma aspartate aminotransferase and alanine aminotransferase activities; urea and creatinine concentrations; and modulated hematological parameters when compared with the untreated control group. Conclusions Findings from this study showed that MEJSL exhibited substantial anti-inflammatory actions in the in vitro and in vivo models. It also indicated that MEJSL anti-inflammatory mechanisms of action could be through interference with phase 2 inflammatory stressors, upregulation of cytoprotective genes, stabilization of inflammatory cell membranes and immunomodulatory activity.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1819
Author(s):  
Laura Micheli ◽  
Alessandra Pacini ◽  
Lorenzo Di Cesare Mannelli ◽  
Elena Trallori ◽  
Roberta D’Ambrosio ◽  
...  

Multifactorial pathogenesis of non-alcoholic steatohepatitis (NASH) disease, a wide-spread liver pathology associated with metabolic alterations triggered by hepatic steatosis, should be hit by multitarget therapeutics. We tested a multicomponent food supplement mixture (AP-NHm), whose components have anti-dislipidemic, antioxidant and anti-inflammatory effects, on in vitro and in vivo models of NASH. In vitro, hepatic cells cultures were treated for 24 h with 0.5 mM oleic acid (OA): in the co-treatment set cells were co-treated with AP-NH mixtures (AP-NHm, 1:3:10 ratio) and in the post-injury set AP-NHm was added for 48 h after OA damage. In vivo, C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks, inducing NASH at 7th week, and treated with AP-NHm at two dosages (1:3 ratio) in co-treatment or post-injury protocols, while a control group was fed with a standard diet. In in vitro co-treatment protocol, alterations of redox balance, proinflammatory cytokines release and glucose uptake were restored in a dose-dependent manner, at highest dosages also in post-injury regimen. In both regimens, pathologic dyslipidemias were also ameliorated by AP-NHm. In vivo, high-dose-AP-NHm-co-treated-HFD mice dose-dependently gained less body weight, were protected from dyslipidemia, and showed a lower liver weight. Dose-dependently, AP-NHm treatment lowered hepatic LDL, HDL, triglycerides levels and oxidative damage; co-treatment regimen was anti-inflammatory, reducing TNF-α and IL-8 levels. Hepatic lipidic infiltration significantly decreased in co-treated and post-injury-AP-NHm-HFD animals. The multitarget approach with AP-NHm was effective in preventing and reducing NASH-related pathologic features, warranting for the clinical development of this compound.


1998 ◽  
Vol 94 (5) ◽  
pp. 505-509 ◽  
Author(s):  
N. L. Bruda ◽  
B. J. Hurlbert ◽  
G. E. Hill

1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.


Author(s):  
Krishna Chaithanya K ◽  
Gopalakrishnan V K ◽  
ZenebeHagos . ◽  
Nagaraju B ◽  
Kamalakararao K ◽  
...  

Objective: Mesuaferrea L is a medicinal plant belongs to the family Clusiace, it is extensively used in folk medicine for treatment of chronic inflammatory diseases.The present study was aimed to evaluate in vitro and in vivo anti-inflammatory activity of M. ferrea L. Methods: The in vitro anti-inflammatory activities such as nitric oxide, PGE2, pro-inflammatory cytokines (TNF-α and IL-1β) were studied in RAW 264.7 cells and in vivo studies were carried out on carrageenan -induced inflammation in Wistar rats. The sequentially extracted M. ferreaL bark extracts (MFBHE, MFBEE, and MFBME) exhibited inhibitory effects on pro-inflammatory mediators such as nitric oxide, prostaglandin E2, tumour necrosis factorαandinterleukin-1βproduction in concentration dependent manner in LPS induced RAW 264.7 cells andCarrageenan induced paw oedema in Wistar rats. Conclusion: The result of the present study indicated that M. ferrea L ethyl acetate bark extract exhibited significant in vitroand in vivoanti-inflammatory activity.


Author(s):  
Doo Jin Choi ◽  
Soo-Im Choi ◽  
Bo-Ram Choi ◽  
Young-Seob Lee ◽  
Dae Young Lee ◽  
...  

Abstract Background Osteoarthritis (OA) is an age-related joint disease with characteristics that involve the progressive degradation of articular cartilage and resulting chronic pain. Previously, we reported that Astragalus membranaceus and Lithospermum erythrorhizon showed significant anti-inflammatory and anti-osteoarthritis activities. The objective of this study was to examine the protective effects of ALM16, a new herbal mixture (7:3) of ethanol extracts of A. membranaceus and L. erythrorhizon, against OA in in vitro and in vivo models. Methods The levels of matrix metalloproteinase (MMP)-1, −3 and − 13 and glycosaminoglycan (GAG) in interleukin (IL)-1β or ALM16 treated SW1353 cells were determined using an enzyme-linked immunosorbent and quantitative kit, respectively. In vivo, the anti-analgesic and anti-inflammatory activities of ALM16 were assessed via the acetic acid-induced writhing response and in a carrageenan-induced paw edema model in ICR mice, respectively. In addition, the chondroprotective effects of ALM16 were analyzed using a single-intra-articular injection of monosodium iodoacetate (MIA) in the right knee joint of Wister/ST rat. All samples were orally administered daily for 2 weeks starting 1 week after the MIA injection. The paw withdrawal threshold (PWT) in MIA-injected rats was measured by the von Frey test using the up-down method. Histopathological changes of the cartilage in OA rats were analyzed by hematoxylin and eosin (H&E) staining. Results ALM16 remarkably reduced the GAG degradation and MMP levels in IL-1β treated SW1353 cells. ALM16 markedly decreased the thickness of the paw edema and writhing response in a dose-dependent manner in mice. In the MIA-induced OA rat model, ALM16 significantly reduced the PWT compared to the control group. In particular, from histological observations, ALM16 showed clear improvement of OA lesions, such as the loss of necrotic chondrocytes and cartilage erosion of more than 200 mg/kg b.w., comparable to or better than a positive drug control (JOINS™, 200 mg/kg) in the cartilage of MIA-OA rats. Conclusions Our results demonstrate that ALM16 has a strong chondroprotective effect against the OA model in vitro and in vivo, likely attributed to its anti-inflammatory activity and inhibition of MMP production.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Mi-Yeong An ◽  
So Rok Lee ◽  
Hye-Jeong Hwang ◽  
Ju-Gyeong Yoon ◽  
Hae-Jeung Lee ◽  
...  

The excessive release of reactive oxygen species (ROS) can result in the development of chronic inflammation. The mechanisms involved in inflammation are various, with endoplasmic reticulum (ER) stress known to be among them. We have previously shown that black ginseng (BG) reduced lipid accumulation in and enhanced the antioxidant function of the liver in vitro and in vivo mostly due to ginsenoside Rb1, Rg3 and Rk1 components. Therefore, this study investigated the antioxidant effect of BG on the intestines and its possible mechanistic pathway through ER stress. The results showed that BG extract decreased ROS and nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression levels in vitro, and these results were confirmed by zebrafish embryos in vivo. However, this phenotype was abolished in the absence of inositol-requiring enzyme 1 (IRE1α) but not in the absence of protein kinase RNA (PKR)-like ER-resistant kinase (PERK) or X-box-binding protein 1 (XBP1) in the mouse embryo fibroblast (MEF) knockout (KO) cells, suggesting that BG elicits an antioxidant effect in an IRE1α-dependent manner. Antioxidant and anti-inflammatory effects were assessed in the liver and intestines of the mouse model affected by nonalcoholic fatty liver disease (NAFLD), which was induced by a high-fat/high-fructose diet. In the liver, BG treatment rescued NAFLD-induced glutathione (GSH), catalase (CAT), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 expression. In the intestines, BG also rescued NAFLD-induced shortened villi, inflammatory immune cell infiltration, upregulated IL-6, cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding homologous protein (CHOP) and binding immunoglobulin protein (BiP) expression. In conclusion, our results show that BG reduces ROS and NO production followed by inflammation in an IRE1α-dependent and XBP1-independent manner. The results suggest that BG provides antioxidant and anti-inflammatory effects through an ER stress mechanism.


Sign in / Sign up

Export Citation Format

Share Document