scholarly journals Thermal Decomposition Study of Ferrocene [(C5H5)2Fe]

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ashis Bhattacharjee ◽  
Amlan Rooj ◽  
Debasis Roy ◽  
Madhusudan Roy

A single-step thermal decomposition of ferrocene [(C5H5)2Fe] using nonisothermal thermogravimetry (TG) has been studied using single- as well as multiple-heating rate programs. Both mechanistic and nonmechanistic methods have been used to analyze the TG data to estimate the kinetic parameters for the solid state reaction. Two different isoconversional methods (improved iterative method and model-free method) have been employed to analyze the TG results to find out whether the activation energy of the reaction depends on the extent of decomposition and to predict the most probable reaction mechanism of thermal decomposition as well. A comparison of the activation energy values for the single-step thermal reaction of ferrocene estimated by different methods has been made in this work. An appraisal on the applicability of single-heating rate data for the analysis of single-step thermal decompositions over the recommendations by the International Confederation for Thermal Analysis and Calorimetry (ICTAC) is made to look beyond the choice.

2014 ◽  
Vol 881-883 ◽  
pp. 726-733
Author(s):  
Gui Ying Xu ◽  
Jiang Bo Wang ◽  
Ling Ping Guo ◽  
Guo Gang Sun

TG analysis was used to investigate the thermal decomposition of switchgrass, which is a potential gasification feedstock. 10 mg switchgrass sample with the particles between 0.45 and 0.70 mm was linearly heated to 873 K at heating rates of 10, 20, 30 K/min, respectively, under high-purity nitrogen. The Kissinger method and three isoconversional methods including Friedman, Flynn-wall-Ozawa, Vyazovkin and Lenikeocink methods were used to estimate the apparent activation energy of switchgrass. With the three isoconversional methods, it can be concluded that the activation energy increases with increasing conversion. The four model free methods reveal activation energies in the range of 70-460 kJ/mol. These activation energy values provide the basic data for the thermo-chemical utilization of the switchgrass.


2013 ◽  
Vol 78 (4) ◽  
pp. 523-536 ◽  
Author(s):  
Ashis Bhattacharjee ◽  
Debasis Roy ◽  
Madhusudan Roy ◽  
Arunabha Adhikari

A multi-step thermal decomposition of a molecular precursor, {N(n-C4H9)4[FeIIFeIII(C2O4)3}? has been studied using non-isothermal thermogravimetry (TG) measurements in the temperature range 300 to ~800 K at multiple heating rates (5, 10 and 20 K min-1). The thermal decomposition of the oxalate-based complex proceeds stepwise through a series of intermediate reactions. Two different isoconversional methods, namely, improved iterative method and model-free method are employed to evaluate the kinetic parameters: activation energy and rate of reaction, and the most probable reaction mechanism of thermal decomposition is also determined. The different reaction pathways leading to different steps in the TG profile have also been explored which are supplemented by earlier experimental observations of the present authors.


2021 ◽  
Vol 5 (3) ◽  
pp. 54
Author(s):  
Ahmad Mohamed S. H. Al-Moftah ◽  
Richard Marsh ◽  
Julian Steer

The global net emissions of the Kyoto Protocol greenhouse gases (GHG), such as carbon dioxide (CO2), fluorinated gases, methane (CH4), and nitrous oxide (N2O), remain substantially high, despite concerted efforts to reduce them. Thermal treatment of solid waste contributes at least 2.8–4% of the GHG in part due to increased generation of municipal solid waste (MSW) and inefficient treatment processes, such as incineration and landfill. Thermal treatment processes, such as gasification and pyrolysis, are valuable ways to convert solid materials, such as wastes into syngas, liquids, and chars, for power generation, fuels, or for the bioremediation of soils. Subcoal™ is a commercial product based on paper and plastics from the source segregated waste that is not readily recyclable and that would otherwise potentially find its way in to landfills. This paper looks at the kinetic parameters associated with this product in pyrolysis, gasification, and combustion conditions for consideration as a fuel for power generation or as a reductant in the blast furnace ironmaking process. Thermogravimetric Analysis (TGA) in Nitrogen (N2), CO2, and in air, was used to measure and compare the reaction kinetics. The activation energy (Ea) and pre-exponential factor A were measured at different heating rates using non-isothermal Ozawa Flynn Wall and (OFW) and Kissinger-Akahira-Sonuse (KAS) model-free techniques. The TGA curves showed that the thermal degradation of Subcoal™ comprises three main processes: dehydration, devolatilization, and char and ash formation. In addition, the heating rate drifts the devolatilization temperature to a higher value. Likewise, the derivative thermogravimetry (DTG) results stated that Tm degradation increased as the heating rate increased. Substantial variance in Ea was noted between the four stages of thermal decomposition of Subcoal™ on both methods. The Ea for gasification reached 200.2 ± 33.6 kJ/mol by OFW and 179.0 ± 31.9 kJ/mol by KAS. Pyrolysis registered Ea values of 161.7 ± 24.7 kJ/mol by OFW and 142.6 ± 23.5 kJ/mol by KAS. Combustion returned the lowest Ea values for both OFW (76.74 ± 15.4 kJ/mol) and KAS (71.0 ± 4.4 kJ/mol). The low Ea values in combustion indicate shorter reaction time for Subcoal™ degradation compared to gasification and pyrolysis. Generally, TGA kinetics analysis using KAS and OFW methods show good consistency in evaluating Arrhenius constants.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2813 ◽  
Author(s):  
Sergey Vyazovkin

The Kissinger method is an overwhelmingly popular way of estimating the activation energy of thermally stimulated processes studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA), and derivative thermogravimetry (DTG). The simplicity of its use is offset considerably by the number of problems that result from underlying assumptions. The assumption of a first-order reaction introduces a certain evaluation error that may become very large when applying temperature programs other than linear heating. The assumption of heating is embedded in the final equation that makes the method inapplicable to any data obtained on cooling. The method yields a single activation energy in agreement with the assumption of single-step kinetics that creates a problem with the majority of applications. This is illustrated by applying the Kissinger method to some chemical reactions, crystallization, glass transition, and melting. In the cases when the isoconversional activation energy varies significantly, the Kissinger plots tend to be almost perfectly linear that means the method fails to detect the inherent complexity of the processes. It is stressed that the Kissinger method is never the best choice when one is looking for insights into the processes kinetics. Comparably simple isoconversional methods offer an insightful alternative.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Olagoke Oladokun ◽  
Arshad Ahmad ◽  
Tuan Amran Tuan Abdullah ◽  
Bemgba Bevan Nyakuma ◽  
Syie Luing Wong

This study is the first attempt at investigating the solid state decomposition and the devolatilization kinetics of Imperata cylindrica (lalang) grass termed the “farmer’s nightmare weed” as a potential solid biofuel of the future. Biomass conversion technologies such as pyrolysis and gasification can be utilized for future green energy needs. However an important step in the efficient utilization and process optimizing of biomass conversion processes is understanding the thermal decomposition kinetics of the feedstock. Consequently, thermogravimetric analysis (TGA) of Imperata cylindrica was carried out in the temperature range of 30-1000 °C at four heating rates of 5, 10, 15, and 20 K min-1 using Nitrogen at a flow rate of 20 L min-1 as purge gas. Using the TGA results, the kinetic parameters activation energy (Ea) and pre-exponential frequency factor (ko) of the grass were estimated via the model free or isoconversional methods of Kissinger and Starink. The results obtained for Kissinger model were 151.36 kJ moI-1 and 5.83 x 109 min-1 for activation energy and pre-exponential frequency factor respectively. However, Starink model activation energy and pre-exponential frequency factor were a function of conversion (α) with average values of 159.93 kJ mol-1 and 6.33 x 1022 min-1 respectively. 


2011 ◽  
Vol 76 (7) ◽  
pp. 1015-1026 ◽  
Author(s):  
Karuvanthodi Muraleedharan ◽  
Labeeb Pasha

The thermal decomposition of potassium titanium oxalate (PTO) was studied using non-isothermal thermogravimetry at different heating rates under a nitrogen atmosphere. The thermal decomposition of PTO proceeds mainly through five stages forming potassium titanate. The theoretical and experimental mass loss data are in good agreement for all stages of the thermal decomposition of PTO. The third thermal decomposition stage of PTO, the combined elimination of carbon monoxide and carbon dioxide, were subjected to kinetic analyses both by the method of model fitting and by the model free approach, which is based on the isoconversional principle. The model free analyses showed that the combined elimination of carbon monoxide and carbon dioxide and formation of final titanate in the thermal decomposition of PTO proceeds through a single step with an activation energy value of about 315 kJ mol-1.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
N. Kanagathara ◽  
M. K. Marchewka ◽  
K. Pawlus ◽  
S. Gunasekaran ◽  
G. Anbalagan

Crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MBDH crystallizes in the monoclinic system (C2/c). Thermal decomposition behavior of MBDH has been studied by thermogravimetric analysis at three different heating rates: 10, 15, and 20°C/min. Nonisothermal studies of MBDH revealed that the decomposition occurs in three stages. The values of effective activation energy (Ea) and preexponential factor (ln A) of each stage of thermal decomposition for all heating rates were calculated by model free methods: Arrhenius, Flynn-Wall, Friedman, Kissinger, and Kim-Park methods. A significant variation of effective activation energy (Ea) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and Ea values was established (compensation effect). Avrami-Erofeev model (A3), contracting cylinder (R2), and Avrami-Erofeev model (A4) were accepted by stages I, II, and III, respectively. DSC has also been performed.


2018 ◽  
Vol 28 ◽  
pp. 75-89
Author(s):  
Hamid Reza Javadinejad ◽  
Sayed Ahmad Hosseini ◽  
Mohsen Saboktakin Rizi ◽  
Eiman Aghababaei ◽  
Hossein Naseri

The kinetic study for the synthesis of Fluorapatite has been done using the thermogravimetric technique under non-isothermal conditions and at four heating rates of 5, 10, 15 and 20 °C. Both model free and model-fitting methods were used to investigate kinetic parameters. Calcium oxide, phosphorus pentoxide and calcium fluoride were used as the precursor materials. The activation energy values were calculated through model-fitting and isoconversional methods and were used to predict the reaction model and pre-exponential factor. In this case several techniques were considered such as master plots and compensation effects. The results indicated that the reaction mechanism was chemically controlled with second and third order reaction models in the whole range of conversion which the activation energy varied from 25 to 43 kJ/mol.


2019 ◽  
Vol 9 (1) ◽  
pp. 22-35
Author(s):  
Bratati Das ◽  
Ashis Bhattacharjee

Background: Thermal decomposition of iron-bearing organometallic complex acetyl ferrocene, (C5H4COCH3)Fe(C5H5), leads to hematite (α-Fe2O3) nanoparticles. Presence of maliec anhydride, C4H2O3 as co-precursor during thermal decomposition modifies the size of the particles as well as the quantity of the reaction product significantly. Objective: Kinetic analysis of the solid-state thermal reaction of acetyl ferrocene in the presence of varying amount of co-precursor maliec anhydride under inert reaction atmosphere has been studied in order to understand the reaction mechanism involved behind the formation of hematite and the role of co-precursor in the reaction process. For this purpose, reaction kinetic analysis of three mixtures of acetyl ferrocene and maliec anhydride has been carried out. Methods: Thermogravimetry under non-isothermal protocol with multiple heating rates has been employed. The data are analyzed using model-free iso-conversional kinetic techniques to estimate the activation energy of reaction and reaction rate. The most-probable reaction mechanism has been identified by master plot method. The kinetic triplets (activation energy, reaction rate, most probable reaction mechanism function) have been employed to estimate the thermodynamic triplets (ΔS, ΔH and ΔG). Observations: Acetyl Ferrocene (AFc) undergoes thermal decomposition in a four-step process leaving certain residual mass whereas maliec anhydride (MA) undergoes complete mass loss owing to melting followed by evaporation. In contrast, the (AFc1-x-MAx) mixtures undergo thermal decomposition through a two-step process, and the decompositions are completed at much lower temperatures than that in AFc. The estimated activation energy and reaction rate values are found strongly dependent on the extent of conversion as well as on the extent of mixing. Introduction of MA in the solid reaction atmosphere of AFc in one hand reduces the activation energy required by AFc to undergo thermal decomposition and the reaction rate, while on the other hand varies the nature of reaction mechanism involved. Results: The range of reaction rate values estimated for the mixtures indicate that the activated complexes during Step-I of thermal decomposition may be treated as ‘loose’ complex whereas ‘tight’ complex for the Step-II. From the estimated entropy values, thermal process of (AFc1-x-MAx) mixture for Steps I and II may be interpreted as ‘‘slow’’ stage. Conclusion: Variation of Gibb’s free energy with the fraction of maliec anhydride in the mixtures for Step-I and II indicate that the thermal processes of changing the corresponding activated complexes are non-spontaneous at room temperature.


Sign in / Sign up

Export Citation Format

Share Document