scholarly journals A Dark Energy Model with Higher Order Derivatives of H in the f(R,T) Modified Gravity Model

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Ratbay Myrzakulov

We consider a model of dark energy (DE) which contains three terms (one proportional to the squared Hubble parameter, one to the first derivative, and one to the second derivative with respect to the cosmic time of the Hubble parameter) in the light of the f(R,T)=μR+νT modified gravity model, with μ and ν being two constant parameters. R and T represent the curvature and torsion scalars, respectively. We found that the Hubble parameter exhibits a decaying behavior until redshifts z≈-0.5 (when it starts to increase) and the time derivative of the Hubble parameter goes from negative to positive values for different redshifts. The equation of state (EoS) parameter of DE and the effective EoS parameter exhibit a transition from ω<-1 to ω>-1 (showing a quintom-like behavior). We also found that the model considered can attain the late-time accelerated phase of the universe. Using the statefinder parameters r and s, we derived that the studied model can attain the ΛCDM phase of the universe and can interpolate between dust and ΛCDM phase of the universe. Finally, studying the squared speed of sound vs2, we found that the considered model is classically stable in the earlier stage of the universe but classically unstable in the current stage.

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
E. Aydiner ◽  
I. Basaran-Öz ◽  
T. Dereli ◽  
M. Sarisaman

AbstractIn this study, we propose an interacting model to explain the physical mechanism of the late time transition from matter-dominated era to the dark energy-dominated era of the Universe evolution and to obtain a scale factor a(t) representing two eras together. In the present model, we consider a minimal coupling of two scalar fields which correspond to the dark matter and dark energy interacting through a potential based on the FLRW framework. Analytical solution of this model leads to a new scale factor a(t) in the hybrid form $$a(t)=a_{0} (t/t_{0})^{\alpha } e^{ht/t_{0}}$$ a ( t ) = a 0 ( t / t 0 ) α e h t / t 0 . This peculiar result reveals that the scale factor behaving as $$a (t) \propto (t/t_{0})^{\alpha }$$ a ( t ) ∝ ( t / t 0 ) α in the range $$t/t_{0}\le t_{c}$$ t / t 0 ≤ t c corresponds to the matter-dominated era while $$a(t) \propto \exp (ht/t_{0})$$ a ( t ) ∝ exp ( h t / t 0 ) in the range $$t/t_{0}>t_{c}$$ t / t 0 > t c accounts for the dark energy-dominated era, respectively. Surprisingly, we explore that the transition from the power-law to the exponential expansion appears at the crossover time $$t_{0} \approx 9.8$$ t 0 ≈ 9.8 Gyear. We attain that the presented model leads to precisely correct results so that the crossover time $$t_{0}$$ t 0 and $$\alpha $$ α are completely consistent with the exact solution of the FLRW and re-scaled Hubble parameter $$H_{0}$$ H 0 lies within the observed limits given by Planck, CMB and SNIa data (or other combinations), which lead to consistent cosmological quantities such as the dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We also discuss time dependent behavior of the dark energy and dark matter to show their roles on the time evolution of the universe. Additionally, we observe that all main results completely depend on the structure of the interaction potential when the parameter values are tuned to satisfy the zero energy condition. Finally, we conclude that interactions in the dark sector may play an important role on the time evolution and provides a mechanism to explain the late time transition of the Universe.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050024
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay

This study reports a reconstruction scheme of a Dark Energy (DE) model with higher-order derivative of Hubble parameter, which is a particular case of Nojiri–Odintsov holographic DE (HDE) [S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 38 (2006) 1285.] that unifies phantom inflation with the acceleration of the universe on late-time. The reconstruction has been carried out in the presence of bulk viscosity, where the bulk-viscous pressure has been taken as a function of Hubble parameter. Ranges of cosmic time [Formula: see text] have been derived for quintessence, cosmological constant and phantom behaviour of the equation-of-state (EoS) parameter. In the viscous scenario, the reconstruction has been carried out in an interacting and noninteracting situations and in both the cases stability against small perturbations has been observed. Finally, the slow roll parameters have been studied and a scope of exit from inflation has been observed. Also, the availability of quasi-exponential expansion has been demonstrated for interacting viscous scenario and a study through tensor-to-scalar ratio has ensured consistency of the model with the observational bound by Planck. Alongwith primordial fluctuations, the interacting scenario has been found to generate strong dissipative regime.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950149 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Aroonkumar Beesham

In this paper, we study some relevant cosmological features of a Dark Energy (DE) model with Granda–Oliveros cut-off, which is just a specific case of Nojiri–Odintsov holographic DE [S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 38 (2006) 1285] unifying phantom inflation with late-time acceleration, in the framework of Chameleon Brans–Dicke (BD) cosmology. Choosing a particular ansatz for some of the quantities involved, we derive the expressions of some important cosmological quantities, like the Equation of State (EoS) parameter of DE [Formula: see text], the effective EoS parameter [Formula: see text], the pressure of DE [Formula: see text] and the deceleration parameter [Formula: see text]. Moreover, we study the behavior of statefinder parameters [Formula: see text] and [Formula: see text], of the cosmographic parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] and of the squared speed of the sound [Formula: see text] for both case corresponding to noninteracting and interacting Dark sectors. We also plot the quantities we have derived and we calculate their values for [Formula: see text] (i.e. for the beginning of the universe history), for [Formula: see text] (i.e. for far future) and for the present time, indicated with [Formula: see text]. The EoS parameters have been tested against various observational values available in the literature.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050011 ◽  
Author(s):  
S. K. J. Pacif ◽  
Md Salahuddin Khan ◽  
L. K. Paikroy ◽  
Shalini Singh

In view of late-time cosmic acceleration, a dark energy cosmological model is revisited wherein Einstein’s cosmological constant is considered as a candidate of dark energy. Exact solution of Einstein field equations (EFEs) is derived in a homogeneous isotropic background in classical general relativity. The solution procedure is adopted in a model-independent way (or the cosmological parametrization). A simple parametrization of the Hubble parameter (H) as a function of cosmic time t is considered which yields an exponential type of evolution of the scale factor (a) and also shows a negative value of deceleration parameter at the present time with a signature flip from early deceleration to late acceleration. Cosmological dynamics of the model obtained have been discussed illustratively for different phases of the evolution of the universe. The evolution of different cosmological parameters is shown graphically for flat and closed cases of Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime for the presented model (open case is incompatible to the present scenario). We have also constrained our model parameters with the updated (36 points) observational Hubble dataset.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460006 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

We consider modified gravity which may describe the early-time inflation and/or late-time cosmic acceleration of the universe. In particular, we discuss the properties of F(R), F(G), string-inspired and scalar-Einstein–Gauss–Bonnet gravities, including their FRW equations and fluid or scalar-tensor description. Simplest accelerating cosmologies are investigated and possibility of unified description of the inflation with dark energy is described. The cosmological reconstruction program which permits to get the requested universe evolution from modified gravity is developed. As some extension, massive F(R) bigravity which is ghost-free theory is presented. Its scalar-tensor form turns out to be the easiest formulation. The cosmological reconstruction method for such bigravity is presented. The unified description of inflation with dark energy in F(R) bigravity turns out to be possible.


2012 ◽  
Vol 21 (02) ◽  
pp. 1250012
Author(s):  
PRIYADARSHI MAJUMDAR

We formulate a modified gravity theory that eliminates the need for dark energy and is stable for a Lagrangian containing R, R2 as well as 1/R terms (i.e. nonlinear contributions of the Ricci curvature with a non-analytic model of f(R) at R = 0) without considering any matter-dominated era. The terms with positive powers (1, 2) of the curvature support the inflationary epoch while the terms with negative power (-1) serves as effective dark energy, supporting current cosmic acceleration. We present a few analytical solutions of evolution equation for the deceleration parameter q as a function of Hubble parameter H and time t; specially in one solution, the universe evolves continuously from q = 1 (a radiation-dominated epoch) to q = -1/2 (dark-energy-dominated late-time accelerating phase) when the universe is sufficiently old. The solution is supported by numerical results. The transition from the decelerated (q > 0) to the accelerated phase (q < 0) of expansion takes place smoothly without having to resort to a study of asymptotic behavior.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050007 ◽  
Author(s):  
Nasr Ahmed

We discuss the recently suggested Ricci–Gauss–Bonnet holographic dark energy in Chern–Simons modified gravity. We have tested some general forms of the scale factor [Formula: see text], and used two physically reasonable forms which have been proved to be consistent with observations. Both solutions predict a sign flipping in the evolution of cosmic pressure which is positive during the early-time deceleration and negative during the late-time acceleration. This sign flipping in the evolution of cosmic pressure helps in explaining the cosmic deceleration–acceleration transition, and it has appeared in other cosmological models in different contexts. However, this work shows a pressure singularity which needs to be explained. The evolution of the equation of state parameter [Formula: see text] shows the same asymptotic behavior for both solutions indicating a quintessence-dominated universe in the far future. We also note that [Formula: see text] goes to negative values (leaving the decelerating dust-dominated era at [Formula: see text]) at exactly the same time the pressure becomes negative. Again, there is another singularity in the behavior of [Formula: see text] which happens at the same cosmic time of the pressure singularity.


2019 ◽  
Vol 97 (5) ◽  
pp. 477-486 ◽  
Author(s):  
Arkaprabha Majumdar ◽  
Surajit Chattopadhyay

Inspired by the work of Bamba et al. (Phys. Rev. D, 85, 104036 (2012)) the present paper reports a study on the reconstruction of modified holographic Ricci dark energy (MHRDE) in the framework of modified gravity taken as f(T) gravity. A correspondence between modified Chaplygin gas and MHRDE has also been considered and thereinafter the f(T) gravity has been reconstructed via reconstruction of the Hubble parameter. The reconstructed equation of state (EoS) parameter obtained this way has been found to be able to cross the phantom boundary. In the next phase of the work, a viable model of f(T) gravity has been considered and MHRDE has been discussed in this modified gravity frame. The EoS parameter due to the torsion contribution obtained this way has been found to behave like quintessence. The transition of the universe from the dark matter dominated to dark energy (DE) dominated phase is apparent from this model. Also, the model is exhibiting DE domination of the current universe. Finally, the statefinder hierarchy has been discussed through the statefinder and snap parameters. The model has been found to be able to attain the ΛCDM fixed point in the statefinder trajectory.


2007 ◽  
Vol 16 (10) ◽  
pp. 1555-1561 ◽  
Author(s):  
LUCA AMENDOLA ◽  
DAVID POLARSKI ◽  
SHINJI TSUJIKAWA

In a recent paper,1 we have shown that f(R) = R + μRn modified gravity dark energy models are not cosmologically viable because during the matter era that precedes the accelerated stage the cosmic expansion is given by a ~ t1/2 rather than a ~ t2/3, where a is a scale factor and t is the cosmic time. A recent work by Capozziello et al.2 criticized our results presenting some apparent counter-examples to our claim in f(R) = μRn models. We show here that those particular Rn models can produce an expansion as a ~ t2/3 but this does not connect to a late-time acceleration. Hence, though acceptable f(R) dark energy models might exist, the Rn models presented in Capozziello et al. are not cosmologically viable, confirming our previous results in Ref. 1.


2007 ◽  
Vol 22 (01) ◽  
pp. 41-53 ◽  
Author(s):  
ZE-LONG YI ◽  
TONG-JIE ZHANG

Using the absolute ages of passively evolving galaxies observed at different redshifts, one can obtain the differential ages, the derivative of redshift z with respect to the cosmic time t (i.e. dz/dt). Thus, the Hubble parameter H(z) can be measured through the relation H(z) = -(dz/dt)/(1+z). By comparing the measured Hubble parameter at different redshifts with the theoretical one containing free cosmological parameters, one can constrain current cosmological models. In this paper, we use this method to present the constraint on a spatially flat Friedman–Robert–Walker universe with a matter component and a holographic dark energy component, in which the parameter c plays a significant role in this dark energy model. Firstly we consider three fixed values of c = 0.6, 1.0 and 1.4 in the fitting of data. If we set c free, the best fitting values are c = 0.26, Ωm0 = 0.16, h = 0.9998. It is shown that the holographic dark energy behaves like a quintom-type at the 1σ level. This result is consistent with some other independent cosmological constrains, which imply that c < 1.0 is favored. We also test the results derived from the differential ages using another independent method based on the lookback time to galaxy clusters and the age of the universe. It shows that our results are reliable.


Sign in / Sign up

Export Citation Format

Share Document