scholarly journals Investigation of the Potential for Evaluation of Concrete Flaws Using Nondestructive Testing Methods

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandre Lorenzi ◽  
Luciane Fonseca Caetano ◽  
Josue Argenta Chies ◽  
Luiz Carlos Pinto da Silva Filho

Adoption of periodic or continuous monitoring strategies to assess condition state of infrastructure elements is a vital part of service life management (SLM). NDT methods are increasingly seen as an attractive and viable strategy to support condition monitoring. Over the last 15 years, the LEME research group at UFRGS has investigated several aspects related to the use of the ultrasonic pulse velocity (UPV) method and its potential for real field applications. One of the main advances involved the development of artificial neural network (ANN) models for correlating compressive strength and UPV measurements. Another examined problem was how to deal with the large amount of raw data derived from inspection of large structures. Several studies were carried out to check different mapping techniques, as reported by Lorenzi et al. 2011. This paper relates one investigation where UPV and rebound hammer (RH) measurements were collected from a beam containing several induced defects, simulated using different materials. The results were processed using a mapping strategy, which indicated suspicious points where core extraction was undertaken. All cores taken from points derived from UPV results were found to have flaws providing evidence that this may be a suitable tool to assess concrete structures, when data is properly interpreted.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1900
Author(s):  
Akram M. Mhaya ◽  
Mohammad Hajmohammadian Baghban ◽  
Iman Faridmehr ◽  
Ghasan Fahim Huseien ◽  
Ahmad Razin Zainal Abidin ◽  
...  

Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


2021 ◽  
Vol 11 (6) ◽  
pp. 2454
Author(s):  
Sofia Real ◽  
José Alexandre Bogas ◽  
Ana Carriço ◽  
Susana Hu

This paper investigates the mechanical and shrinkage behaviour of concrete with recycled cement (RC) thermoactivated from waste cement paste and waste concrete. Overall, compared to ordinary Portland cement (OPC), for the same water/binder ratio, the mechanical strength and ultrasonic pulse velocity were not significantly influenced by the incorporation of RC. The elasticity modulus decreased with the addition of RC and the shrinkage tended to increase at high RC content. The incorporation of up to 15% RC allowed the production of workable concrete with identical shrinkage and similar to higher mechanical strength than concrete with only OPC. RC proved to be a very promising more eco-efficient supplementary cementitious material.


Sign in / Sign up

Export Citation Format

Share Document