scholarly journals Inflammatory Lung Disease in Rett Syndrome

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Claudio De Felice ◽  
Marcello Rossi ◽  
Silvia Leoncini ◽  
Glauco Chisci ◽  
Cinzia Signorini ◽  
...  

Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n= 228) and to examine lung histology in aMecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with “high” (39.8%) and “low” (34.8%) patterns dominating over “mixed” (19.6%) and “simple mismatch” (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examinedMecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mirko Luoni ◽  
Serena Giannelli ◽  
Marzia Tina Indrigo ◽  
Antonio Niro ◽  
Luca Massimino ◽  
...  

Rett syndrome is an incurable neurodevelopmental disorder caused by mutations in the gene encoding for methyl-CpG binding-protein 2 (MeCP2). Gene therapy for this disease presents inherent hurdles since MECP2 is expressed throughout the brain and its duplication leads to severe neurological conditions as well. Herein, we use the AAV-PHP.eB to deliver an instability-prone Mecp2 (iMecp2) transgene cassette which, increasing RNA destabilization and inefficient protein translation of the viral Mecp2 transgene, limits supraphysiological Mecp2 protein levels. Intravenous injections of the PHP.eB-iMecp2 virus in symptomatic Mecp2 mutant mice significantly improved locomotor activity, lifespan and gene expression normalization. Remarkably, PHP.eB-iMecp2 administration was well tolerated in female Mecp2 mutant or in wild-type animals. In contrast, we observed a strong immune response to the transgene in treated male Mecp2 mutant mice that was overcome by immunosuppression. Overall, PHP.eB-mediated delivery of iMecp2 provided widespread and efficient gene transfer maintaining physiological Mecp2 protein levels in the brain.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Anna Maria Papini ◽  
Francesca Nuti ◽  
Feliciana Real-Fernandez ◽  
Giada Rossi ◽  
Caterina Tiberi ◽  
...  

Rett syndrome (RTT), a neurodevelopmental disorder affecting exclusively (99%) female infants, is associated with loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2) and, more rarely, cyclin-dependent kinase-like 5 (CDKL5) and forkhead box protein G1 (FOXG1). In this study, we aimed to evaluate the function of the immune system by measuring serum immunoglobulins (IgG and IgM) in RTT patients (n=53) and, by comparison, in age-matched children affected by non-RTT pervasive developmental disorders (non-RTT PDD) (n=82) and healthy age-matched controls (n=29). To determine immunoglobulins we used both a conventional agglutination assay and a novel ELISA based on antibody recognition by a surrogate antigen probe, CSF114(Glc), a syntheticN-glucosylated peptide. Both assays provided evidence for an increase in IgM titer, but not in IgG, in RTT patients relative to both healthy controls and non-RTT PDD patients. The significant difference in IgM titers between RTT patients and healthy subjects in the CSF114(Glc) assay (P=0.001) suggests that this procedure specifically detects a fraction of IgM antibodies likely to be relevant for the RTT disease. These findings offer a new insight into the mechanism underlying the Rett disease as they unveil the possible involvement of the immune system in this pathology.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Alessio Cortelazzo ◽  
Claudio De Felice ◽  
Roberto Guerranti ◽  
Cinzia Signorini ◽  
Silvia Leoncini ◽  
...  

Inflammation has been advocated as a possible common central mechanism for developmental cognitive impairment. Rett syndrome (RTT) is a devastating neurodevelopmental disorder, mainly caused byde novoloss-of-function mutations in the gene encoding MeCP2. Here, we investigated plasma acute phase response (APR) in stage II (i.e., “pseudo-autistic”) RTT patients by routine haematology/clinical chemistry and proteomic 2-DE/MALDI-TOF analyses as a function of four majorMECP2gene mutation types (R306C, T158M, R168X, and large deletions). Elevated erythrocyte sedimentation rate values (median 33.0 mm/h versus 8.0 mm/h,P<0.0001) were detectable in RTT, whereas C-reactive protein levels were unchanged (P=0.63). The 2-DE analysis identified significant changes for a total of 17 proteins, the majority of which were categorized as APR proteins, either positive (n=6spots) or negative (n=9spots), and to a lesser extent as proteins involved in the immune system (n=2spots), with some proteins having overlapping functions on metabolism (n=7spots). The number of protein changes was proportional to the severity of the mutation. Our findings reveal for the first time the presence of a subclinical chronic inflammatory status related to the “pseudo-autistic” phase of RTT, which is related to the severity carried by theMECP2gene mutation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alessio Cortelazzo ◽  
Roberto Guerranti ◽  
Claudio De Felice ◽  
Cinzia Signorini ◽  
Silvia Leoncini ◽  
...  

Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Although over 200 mutations types have been identified so far, nine of which the most frequent ones. A wide phenotypical heterogeneity is a well-known feature of the disease, with different clinical presentations, including the classical form and the preserved speech variant (PSV). Aim of the study was to unveil possible relationships between plasma proteome and phenotypic expression in two cases of familial RTT represented by two pairs of sisters, harbor the sameMECP2gene mutation while being dramatically discrepant in phenotype, that is, classical RTT versus PSV. Plasma proteome was analysed by 2-DE/MALDI-TOF MS. A significant overexpression of six proteins in the classical sisters was detected as compared to the PSV siblings. A total of five out of six (i.e., 83.3%) of the overexpressed proteins were well-known acute phase response (APR) proteins, including alpha-1-microglobulin, haptoglobin, fibrinogen beta chain, alpha-1-antitrypsin, and complement C3. Therefore, the examined RTT siblings pairs proved to be an important benchmark model to test the molecular basis of phenotypical expression variability and to identify potential therapeutic targets of the disease.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Dorothy P Schafer ◽  
Christopher T Heller ◽  
Georgia Gunner ◽  
Molly Heller ◽  
Christopher Gordon ◽  
...  

Microglia, the resident CNS macrophages, have been implicated in the pathogenesis of Rett Syndrome (RTT), an X-linked neurodevelopmental disorder<xref ref-type="bibr" rid="bib19"/><xref ref-type="bibr" rid="bib15"/><xref ref-type="bibr" rid="bib37"/><xref ref-type="bibr" rid="bib47"/>. However, the mechanism by which microglia contribute to the disorder is unclear and recent data suggest that microglia do not play a causative role<xref ref-type="bibr" rid="bib67"/>. Here, we use the retinogeniculate system to determine if and how microglia contribute to pathogenesis in a RTT mouse model, the Mecp2 null mouse (Mecp2tm1.1Bird/y). We demonstrate that microglia contribute to pathogenesis by excessively engulfing, thereby eliminating, presynaptic inputs at end stages of disease (≥P56 Mecp2 null mice) concomitant with synapse loss. Furthermore, loss or gain of Mecp2 expression specifically in microglia (Cx3cr1CreER;Mecp2fl/yor Cx3cr1CreER; Mecp2LSL/y) had little effect on excessive engulfment, synapse loss, or phenotypic abnormalities. Taken together, our data suggest that microglia contribute to end stages of disease by dismantling neural circuits rendered vulnerable by loss of Mecp2 in other CNS cell types.


2015 ◽  
Vol 112 (17) ◽  
pp. 5509-5514 ◽  
Author(s):  
Lin Chen ◽  
Kaifu Chen ◽  
Laura A. Lavery ◽  
Steven Andrew Baker ◽  
Chad A. Shaw ◽  
...  

Epigenetic mechanisms, such as DNA methylation, regulate transcriptional programs to afford the genome flexibility in responding to developmental and environmental cues in health and disease. A prime example involving epigenetic dysfunction is the postnatal neurodevelopmental disorder Rett syndrome (RTT), which is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 regulates transcription or why RTT features appear 6–18 months after birth. Here we report integrated analyses of genomic binding of MeCP2, gene-expression data, and patterns of DNA methylation. In addition to the expected high-affinity binding to methylated cytosine in the CG context (mCG), we find a distinct epigenetic pattern of substantial MeCP2 binding to methylated cytosine in the non-CG context (mCH, where H = A, C, or T) in the adult brain. Unexpectedly, we discovered that genes that acquire elevated mCH after birth become preferentially misregulated in mouse models of MeCP2 disorders, suggesting that MeCP2 binding at mCH loci is key for regulating neuronal gene expression in vivo. This pattern is unique to the maturing and adult nervous system, as it requires the increase in mCH after birth to guide differential MeCP2 binding among mCG, mCH, and nonmethylated DNA elements. Notably, MeCP2 binds mCH with higher affinity than nonmethylated identical DNA sequences to influence the level of Bdnf, a gene implicated in the pathophysiology of RTT. This study thus provides insight into the molecular mechanism governing MeCP2 targeting and sheds light on the delayed onset of RTT symptoms.


2020 ◽  
Vol 29 (15) ◽  
pp. 2461-2470
Author(s):  
Jonathan K Merritt ◽  
Bridget E Collins ◽  
Kirsty R Erickson ◽  
Hongwei Dong ◽  
Jeffrey L Neul

Abstract Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in Methyl-CpG-binding Protein 2 (MECP2). More than 35% of affected individuals have nonsense mutations in MECP2. For these individuals, nonsense suppression has been suggested as a possible therapeutic approach. To assess the viability of this strategy, we created and characterized a mouse model with the common p.R294X mutation introduced into the endogenous Mecp2 locus (Mecp2R294X). Mecp2R294X mice exhibit phenotypic abnormalities similar to those seen in complete null mouse models; however, these occur at a later time point consistent with the reduced phenotypic severity seen in affected individuals containing this specific mutation. The delayed onset of severe phenotypes is likely due to the presence of truncated MeCP2 in Mecp2R294X mice. Supplying the MECP2 transgene in Mecp2R294X mice rescued phenotypic abnormalities including early death and demonstrated that the presence of truncated MeCP2 in these mice does not interfere with wild-type MeCP2. In vitro treatment of a cell line derived from Mecp2R294X mice with the nonsense suppression agent G418 resulted in full-length MeCP2 protein production, demonstrating feasibility of this therapeutic approach. Intraperitoneal administration of G418 in Mecp2R294X mice was sufficient to elicit full-length MeCP2 protein expression in peripheral tissues. Finally, intracranial ventricular injection of G418 in Mecp2R294X mice induced expression of full-length MeCP2 protein in the mouse brain. These experiments demonstrate that translational read-through drugs are able to suppress the Mecp2 p.R294X mutation in vivo and provide a proof of concept for future preclinical studies of nonsense suppression agents in RTT.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Claudio De Felice ◽  
Alessio Cortelazzo ◽  
Cinzia Signorini ◽  
Roberto Guerranti ◽  
Silvia Leoncini ◽  
...  

The mechanism of action of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) is only partially known. Prior reports suggest a partial rescue of clinical symptoms and oxidative stress (OS) alterations followingω-3 PUFAs supplementation in patients with Rett syndrome (RTT), a devastating neurodevelopmental disorder with transient autistic features, affecting almost exclusively females and mainly caused by sporadic mutations in the gene encoding the methyl CpG binding protein 2 (MeCP2) protein. Here, we tested the hypothesis thatω-3 PUFAs may modify the plasma proteome profile in typical RTT patients withMECP2mutations and classic phenotype. A total of 24 RTT girls at different clinical stages were supplemented withω-3 PUFAs as fish oil for 12 months and compared to matched healthy controls. The expression of 16 proteins, mainly related to acute phase response (APR), was changed at the baseline in the untreated patients. Followingω-3 PUFAs supplementation, the detected APR was partially rescued, with the expression of 10 out of 16 (62%) proteins being normalized.ω-3 PUFAs have a major impact on the modulation of the APR in RTT, thus providing new insights into the role of inflammation in autistic disorders and paving the way for novel therapeutic strategies.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052093280
Author(s):  
Meng Gao ◽  
Kuo Zeng ◽  
Ya Li ◽  
Yong-ping Liu ◽  
Xi Xia ◽  
...  

Objective Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. The gene encoding EF-hand domain-containing protein D2 ( EFHD2) may be a genetic risk locus for schizophrenia. Methods We genotyped four EFHD2 single-nucleotide polymorphisms (281 schizophrenia cases [SCZ], 321 controls) from northern Chinese Han individuals using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis. Differences existed in genotype, allele, and haplotype frequency distributions between SCZ and control groups. Results The rs2473357 genotype and allele frequency distributions differed between SCZ and controls; however, this difference disappeared after Bonferroni correction. Differences in rs2473357 genotype and allele frequency distributions between SCZ and controls were more pronounced in men than in women. The G allele increased schizophrenia risk (odds ratio = 1.807, 95% confidence interval = 1.164–2.803). Among six haplotypes (G–, A–, G-insC, A-C, G-C, and G-T), the G– haplotype frequency distribution differed between SCZ and controls in women; the A-C and G-C haplotype frequency distributions differed between SCZ and controls in men. Conclusions EFHD2 may be involved in schizophrenia. Sex differences in EFHD2 genotype and allele frequency distributions existed among schizophrenia patients. Further research is needed to determine the role of EFHD2 in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document