scholarly journals Application of Gold Nanoparticles for Electrochemical DNA Biosensor

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Mishaal Mohammed ◽  
Ruslinda A. Rahim ◽  
Ibraheem Jaleel Ibraheem ◽  
Foo Kai Loong ◽  
Hasrul Hisham ◽  
...  

An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl)triethoxysilane (APTES) as a linker molecule combined with the gold nanoparticles (GNPs) on thermally oxidized SiO2thin films. The SiO2thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μF, 77.8 μF, 70 μF, and 64.6 μF, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μF, 54 μF, 55 μF, and 61.5 μF, respectively. The capacitance value of bare SiO2thin film was 0.42 μF, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO2thin films using APTES and GNPs were successfully developed for DNA detection.

2020 ◽  
Author(s):  
Briliant Adhi Prabowo ◽  
Agnes Purwidyantri ◽  
Bei Liu ◽  
Hsin-Chih Lai ◽  
Kou-Chen Liu

The impact of different gold nanoparticles (GNPs) structures on the plasmonic enhancement for DNA detection is investigated on a few-layer graphene (FLG) surface plasmon resonance (SPR) sensor. Two distinct structures of gold nanourchins (GNu) and gold nanorods (GNr) were used to bind the uniquely designed single-stranded probe DNA (ssDNA) of Mycobacterium tuberculosis complex (MTBC) DNA. The two types of GNPs-ssDNA mixture were adsorbed onto the FLGcoated SPR sensor through the π-π stacking force between the ssDNA and the graphene layer. In the presence of the complementary single-stranded DNA (cssDNA), the hybridization process took place and gradually removed the probes from the graphene surface. From SPR sensor preparation, the annealing process of the Au layer of the SPR sensor effectively enhanced the FLG coverage leading to a higher load of the probe DNA onto the sensing interface. The FLG was shown effective in providing a larger surface area for biomolecular capture due to its roughness. Carried out in the DNA hybridization study with SPR sensor, GNu, with its rough and spikey structures, significantly reinforced the overall DNA hybridization signal than the GNr with smooth superficies, especially in capturing the probe DNA. The DNA hybridization detection assisted by GNu reached the femtomolar range limit of detection (LoD). An optical simulation validated the extreme plasmonic field enhancement at the tip of the GNu spicules. The overall integrated approach of graphene-based SPR sensor and GNu-assisted DNA detection provided the proof-of-concept for the possibility for Tuberculosis disease screening using a low-cost and portable system potentially applied in remote or third world countries.


2013 ◽  
Vol 631-632 ◽  
pp. 572-575 ◽  
Author(s):  
Wei Wei Ye ◽  
Mo Yang

This study shows the study of optimal surface functionalization of nanoporous alumina membrane for "label-free" DNA detection. Single stranded DNA was first covalently immobilized on the nanopore walls via silane-PEG-NHS linker. The remained NHS group was hydrolyzed to form PEG layer to minimize the unspecific DNA binding during hybridization process. Optimal PEG-silane linker was achieved for better DNA immobilization efficiency. Using this optofluidic device, both ss-DNA immobilization and ds-DNA hybridization were successfully monitored via UV-Vis spectrum montoring. The nanopore size effect on DNA binding efficiency of membranes were also studied. With the increase of nanopore size, the DNA binding efficiency increased due to the increased reacted surface area. This portable optofluidic device integrated with nanoporos alumina membrane has the potential for nucleic acid in field detection in the application of food screening and environmental monitoring with high sensitivity


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76214-76222 ◽  
Author(s):  
Manvi Tak ◽  
Vinay Gupta ◽  
Monika Tomar

The article focuses on the synthesis of ZnO and CNTs based electrochemical DNA biosensor and its application towards meningitis DNA detection with high sensitivity as well as selectivity.


2021 ◽  
Author(s):  
Esmaeel Alipour ◽  
Sheida Norouzi ◽  
Shokoufe Moradi

Electrochemical DNA biosensor is designed for detection of specific target DNA after hybridization with complementary probe DNA immobilized onto glassy carbon electrode surface. Quercetin was successfully used as a new...


2020 ◽  
Vol 16 ◽  
Author(s):  
Lijun Yan ◽  
Bo Shao ◽  
Xiaoping Zhang ◽  
Yanyan Niu ◽  
Wendi Dang ◽  
...  

Background: Based on gold nanoparticles (AuNPs) and thiol graphene (TGR) nanocomposite modified carbon ionic liquid electrode, an electrochemical DNA biosensor was prepared to detect specific nuc gene of Staphylococcus aureus, which was further used to the analysis of PCR amplification samples from unfrozen pork. Objective: The construction of DNA biosensor with AuNPs and TGR could be used as a new sensing platform to detect specific ssDNA sequence in real biological samples. Method: Electrochemical behaviors of working electrodes were studied by cyclic voltammetry and electrochemical impedance spectroscopy with electrochemical performances of this biosensor investigated by differential pulse voltammetry. Results: This gene sensor could detect the specific nuc gene of Staphylococcus aureus in the linear concentration range from 1.0×10-15 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 4.5×10-16 mol L-1 (3σ), and it was applied to the detection of PCR amplification sample of Staphylococcus aureus with satisfactory results. Conclusion: This gene biosensor showed high sensitivity and good selectivity, wide detection range and low detection limit, which demonstrated an effective tool to detect specific nuc gene sequences of Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document