scholarly journals Optically Controlled Reconfigurable Antenna Array Based on E-Shaped Elements

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Arismar Cerqueira Sodré Junior ◽  
Igor Feliciano da Costa ◽  
Leandro Tiago Manera ◽  
José Alexandre Diniz

This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5 GHz. A measured gain of 12.5 dBi has been obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

Author(s):  
Mohamad Kamal A Rahim ◽  
Huda A. A. Majid ◽  
Mohamad Rijal Hamid

Reconfigurable antennas have attracted a lot of attention especially in future wireless communication systems. Superior features such as reconfigurable capability, low cost, multi-purpose functions and size miniaturization have given reconfigurable antennas advantage to be integrated into a wireless systems. In this chapter, two types of reconfigurable antennas are discussed. First, frequency reconfigurable narrowband microstrip slot antenna (FRSA) is presented. The proposed antenna is designed to operate at six reconfigurable frequency bands from 2 GHz to 5 GHz with bidirectional radiation pattern. The second antenna design is frequency reconfigurable narrowband patch-slot antenna (FRPSA) is presented. The antenna is a combination of a microstrip patch and slot antenna. Nine different narrow bands are produced by tuning the effective length of the slot. The performances of the antenna in term of simulated and measured results are presented. In conclusion, good agreement between the simulated and measured results has been attained.


2008 ◽  
Vol 2008 ◽  
pp. 1-6
Author(s):  
Aleksandar Nešić ◽  
Ivana Radnović ◽  
Zoran Mićić

The problem of side lobe suppression (SLS) in printed antenna arrays has been investigated in the paper. Influence of several factors that make difficult design and realization of antenna arrays with relatively high SLS has been analyzed. We introduced a new type of printed antenna array with symmetrical pentagonal dipoles and symmetrical tapered feed network with Chebyshev distribution enabling SLS better than 34 dB in E-plane. Agreement between simulated and measured results is very good. The antenna is suitable for integration with other microwave circuits. Presented antenna is low cost and very simple for realization.


2013 ◽  
Vol 11 ◽  
pp. 297-305 ◽  
Author(s):  
M. Gardill ◽  
G. Fischer ◽  
R. Weigel ◽  
A. Koelpin

Abstract. We generally categorize the approaches for ultra-wideband antenna array design, and consequently propose simplified concepts for antenna arrays for a high-precision, ultra-wideband FMCW radar 2-D local positioning system to obtain robustness against multi path interference, perform angle of arrival analysis, as well as instantaneous heading estimation. We focus on low-cost and mechanical robust, industrial-application ready antennas. The antenna arrays are optimized for operation in the 5 GHz to 8 GHz frequency range and are designed towards supporting full omnidirectional 360° as well as partial half-plane direction of arrival estimation. Two different concepts for vehicle- as well as wall-mounted antenna array systems are proposed and discussed. We propose a wideband unidirectional bow-tie antenna array element having 97% impedance and 37% pattern bandwidth and a robust vehicle mounted omnidirectional antenna element having more than 85% impedance and pattern bandwidth.


Author(s):  
Falguni Raval ◽  
Tulsi Patel ◽  
Trushit Upadhyaya

Background & Objective: Partially grounded frequency reconfigurable antenna is discussed in this paper. Antenna frequency cover is 4.2 GHz to 7 GHz and it has reconfigurable notchband near 5 GHz frequency. Frequency rejection is achieved by using circular split-ring slots in radiating element. The antenna can be reconfigured at 5.1 GHz, 5.4 GHz and 5.9 GHz by creating more slots in outer most split-ring. Designed antennas are printed on FR-4, low-cost substrate having relative permittivity of 4.4 and thickness of 1.6 mm. Results & Conclusion: Simulation of antennas is carried out using High Frequency Structure Simulator (HFSS) software. Designed antenna has omni directional radiation pattern. The prototype antennas are fabricated and tested using network analyzer. Good matching is observed between simulated and measured results.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangtao Li ◽  
Minghao Yin

Multibeam antenna arrays have important applications in communications and radar. This paper presents a new method of designing a reconfigurable antenna with quantized phase excitations using a new hybrid algorithm, called DE/BBO. The reconfigurable design problem is to find the element excitation that will result in a sector pattern main beam with low sidelobes with additional requirement that the same excitation amplitudes applied to the array with zero-phase should be in a high directivity, low sidelobe pencil-shaped main beam. In order to reduce the effect of mutual coupling between the antenna-array elements, the dynamic range ratio is minimized. Additionally, compared with the continuous realization and subsequent quantization, experimental results indicate that the performance of the discrete realization of the phase excitation value can be improved. In order to test the performances of hybrid differential evolution with biogeography-based optimization, the results of some state-of-art algorithms are considered, for the purposed of comparison. Experiment results indicate the better performance of the DE/BBO.


Author(s):  
Maria Trigka ◽  
Christos Mavrokefalidis ◽  
Kostas Berberidis

AbstractIn the context of this research work, we study the so-called problem of full snapshot reconstruction in hybrid antenna array structures that are utilized in mmWave communication systems. It enables the recovery of the snapshots that would have been obtained if a conventional (non-hybrid) uniform linear antenna array was employed. The problem is considered at the receiver side where the hybrid architecture exploits in a novel way the antenna elements of a uniform linear array. To this end, the recommended scheme is properly designed so as to be applicable to overlapping and non-overlapping architectures. Moreover, the full snapshot recoverability is addressed for two cases, namely for time-varying and constant signal sources. Simulation results are also presented to illustrate the consistency between the theoretically predicted behaviors and the simulated results, and the performance of the proposed scheme in terms angle-of-arrival estimation, when compared to the conventional MUSIC algorithm and a recently proposed hybrid version of MUSIC (H-MUSIC).


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document