Synthesis of Physically Functionalized Carbon Nanotube Reinforced Al-Si Nanocomposite by Spark Plasma Sintering

2014 ◽  
Vol 783-786 ◽  
pp. 1542-1547
Author(s):  
Anway Maiti ◽  
Ram S. Maurya ◽  
Tapas Laha

Multiwalled carbon nanotube (MWCNT) reinforced Al-Si (11 wt%) alloy based nanocomposites were synthesized by spark plasma sintering using high energy ball milled nanocrystalline Al-Si powders mixed with physically functionalized MWCNTs. Improvement in MWCNT dispersion and associated improvement in densification of the nanocomposites were confirmed. The microhardness and elastic modulus of the nanocomposites measured by nanoindentation exhibited appreciable improvement. Grain size measurement by X ray diffraction and transmission electron microscopy confirmed achievement of nanocrystalline grains in Al-Si powder after ball milling, as well as in the consolidated nanocomposites. TEM analysis was performed to reveal the dislocation activity, effect of presence of primary Si and distribution of MWCNTs in the nanocomposites.

2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Duk-Yeon Kim ◽  
Young-Hwan Han ◽  
Jun Hee Lee ◽  
Inn-Kyu Kang ◽  
Byung-Koog Jang ◽  
...  

Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphologyin vitrofor 1 day.


2020 ◽  
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

Abstract A new nano-laminated Y3Si2C2 ceramic material, for the first time, was successfully synthesized via in situ reaction between YH2 and SiC by spark plasma sintering. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping was observed at the tip of the Vickers indent. The values of elastic modulus and Vickers hardness of the Y3Si2C2 ceramics sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W m-1 k-1 and 6.3 × 105 S m-1, respectively.


CORROSION ◽  
10.5006/3633 ◽  
2020 ◽  
Author(s):  
Mohammad Umar Farooq Khan ◽  
Taban Larimian ◽  
Tushar Borkar ◽  
Rajeev Gupta

ABSTRACT In this work, nine nanocrystalline binary Mg alloys synthesized by high energy ball milling. The compositions, Mg-5wt.%M (M- Cr, Ge, Mn, Mo, Ta, Ti, V, Y, Zn) were milled with an objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25 ï‚°C and spark plasma sintering (SPS) at 300 ï‚°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. X-ray diffraction analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all the alloys. The corrosion behavior was improved in all the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloy.


2011 ◽  
Vol 399-401 ◽  
pp. 1592-1595
Author(s):  
Kee Do Woo ◽  
Sang Hoon Park ◽  
Ji Young Kim ◽  
Sang Mi Kim ◽  
Dong Soo Kang

Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxic. Therefore, biomaterial with low elastic modulus and nontoxic has to be developed. In this study, the raw materials which are nontoxic elements such as Nb and Mo were mixed and milled in a mixing machine (24h) and a high energy mechanical ball milling machine (1h, 4h and 8h) respectively. Ti-Nb-Mo-CPP composites were fabricated by spark plasma sintering (SPS) at 1000°C under 70MPa using mixed and milled powders. The effects of CPP contents and milling time on biocompatibility and mechanical property have been investigated. By X-ray diffraction (XRD), chemical reaction during the sintering was occurred and revealed new phases, Ti2O, CaO, CaTiO3, and TixPy. Vickers hardness of composites increases with increase milling time and addition of HA contents. Biocompatibility of HA added Ti-Nb-Si alloys were improved.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 638
Author(s):  
Fei Liu ◽  
Shaojun Liu ◽  
Xuejiao Cui ◽  
Lijin Cheng ◽  
Hao Li ◽  
...  

The degree of Zn2+ and Ta5+ ions ordering could play an important role in the dielectric loss in Ba(Zn1/3Ta2/3)O3 (BZT) ceramics. However, the influence of the grain size of Ba(B′1/3B″2/3)O3 ceramics with nano or sub-micron grains on the ordering domains structure is still not clear. In the present paper, highly dense (~98%) BZT microwave dielectric ceramics with homogeneous sub-micron structure (~330 nm) were prepared through spark plasma sintering (SPS). High resolution transmission electron microscopy combined with X-ray diffraction (XRD)clearly showed that the B-site ordering structure of sintered BZT samples by SPS becomes the B-site long-range 1:2 ordering as annealing proceeds. In contrast, the short-range 1:2 ordering in non-annealed counterparts was also present, which was not detectable by XRD. The size of B-site ordering domains enlarged with annealing temperature. The sub-micron structure of sintered BZT ceramics by SPS remained stable at up to 1400 C; however, the size of B-site 1:2 ordering domain was more than five times larger, which led to a significant increase of the quality factor (Q·f) to 37,700 GHz from 15,000 GHz.


Author(s):  
Chia-Hung Kuo ◽  
Chii-Shyang Hwang ◽  
Jie-Ren Ku ◽  
Ming-Shan Jeng ◽  
Fang-Hei Tsau

PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then studied by X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images. Transport properties of polycrystalline PbTe bulks were evaluated through temperature dependent thermal conductivity measurements.


2009 ◽  
Vol 19 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Motohiro Uo ◽  
Tomoka Hasegawa ◽  
Tsukasa Akasaka ◽  
Isao Tanaka ◽  
Fuminori Munekane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document