scholarly journals The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Surian Pinem ◽  
Tagor Malem Sembiring ◽  
Peng Hong Liem

A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised). Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Tagor Malem Sembiring ◽  
Surian Pinem ◽  
Peng Hong Liem

The in-house coupled neutronic and thermal-hydraulic (N/T-H) code of BATAN (National Nuclear Energy Agency of Indonesia), NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers), respectively.


2021 ◽  
Vol 247 ◽  
pp. 07019 ◽  
Author(s):  
Margaux Faucher ◽  
Davide Mancusi ◽  
Andrea Zoia

In this work, we present the first dynamic calculations performed with the Monte Carlo neutron transport code TRIPOLI-4R with thermal-hydraulics feedback. For this purpose, the Monte Carlo code was extended for multi-physics capabilities and coupled to the thermal-hydraulics subchannel code SUBCHANFLOW. As a test case for the verification of transient simulation capabilities, a 3x3-assembly mini-core benchmark based on the TMI-1 reactor is considered with a pin-by-pin description. Two reactivity excursion scenarios initiated by control-rod movement are simulated starting from a critical state and compared to analogous simulations performed using the Serpent 2 Monte-Carlo code. The time evolution of the neutron power, fuel temperature, coolant temperature and coolant density are analysed to assess the multi-physics capabilities of TRIPOLI-4. The stabilizing e_ects of thermal-hydraulics on the neutron power appear to be well taken into account. The computational requirements for massively parallel calculations are also discussed.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Wang Lianjie ◽  
Lu Di ◽  
Zhao Wenbo

Transient performance of China supercritical water-cooled reactor (SCWR) with the rated electric power of 1000 MWel (CSR1000) core during some typical transients, such as control rod (CR) ejection and uncontrolled CR withdrawal, is analyzed and evaluated with the coupled three-dimensional neutronics and thermal-hydraulics SCWR transient analysis code. The 3D transient analysis shows that the maximum cladding surface temperature (MCST) retains lower than safety criteria 1260 °C during the process of CR ejection accident, and the MCST retains lower than safety criteria 850 °C during the process of uncontrolled CR withdrawal transient. The safety of CSR1000 core can be ensured during the typical transients under the salient fuel temperature and water density reactivity feedback and the essential reactor protection system.


2005 ◽  
Vol 297-300 ◽  
pp. 2720-2726
Author(s):  
Nobumasa Tsuji ◽  
Taiju Shibata ◽  
Junya Sumita ◽  
Masahiro Ishihara ◽  
Tatsuo Iyoku

High temperature gas cooled reactor (HTGR) with higher outlet coolant temperature nearly 1000°C is expected for direct utilization of process heat to hydrogen production. The thermal analysis of reactor internals with 3 dimensional, flow paths coupled model was conducted to demonstrate how strictly PSR block gaps must be closed to limit core bypass flow rate ratio lest fuel temperature should exceed admissible level, and the highly heat resistant core restraint mechanism must be developed in consequence. Potential applicability of the core restraint mechanism made of C/C composite, the attractive candidate material, was demonstrated by point design with adequate thickness and FEM stress analysis for material with orthotropic anisotropy .


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Van Khanh Hoang

This paper presents the core design and performance characteristics of a 300 MWt small modular reactor (SMR) with fuel assemblies of the AP1000 reactor. Numerical calculations have been performed to evaluate a proper active core size and core loading pattern using the SRAC code system with the JENDL-4.0 data library and the CORBRA-EN code. The calculated temperature coefficients including fuel temperature, coolant temperature, and isothermal temperature coefficient provide adequate negative reactivity feedbacks. The thermal-hydraulic analysis reveals acceptable radial and axial fuel element temperature profiles with significant safety margin of fuel and clad surface temperature. A safety analysis using the CORBRA-EN code shows that the core will remain covered during the entire transient procedure of the fast transient of remarkably increasing power that would be caused by the ejection of control rod. The analysis results indicate that the core with a cycle length of 2.22 years is achievable while satisfying the operation and safety-related design criteria with sufficient margins.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Vitali Kovaltchouk ◽  
Eleodor Nichita ◽  
Eugene Saltanov

The axial power and coolant-temperature distributions in a fuel channel of the Generation IV pressure-tube super-critical water-cooled reactor (PT-SCWR) are found using coupled neutronics-thermal-hydraulics calculations. The simulations are performed for a channel loaded with a fresh, 78-element Th-Pu fuel assembly. Neutronics calculations are performed using the DONJON diffusion code using two-group homogenized cross sections produced using the lattice code DRAGON. The axial coolant temperature profile corresponding to a certain axial linear heat generation rate is found using a code developed in-house at University of Ontario Institute of Technology (UOIT). The effect of coolant density, coolant temperature, and fuel temperature variation along the channel is accounted for by generating macroscopic cross sections at several axial positions. Fixed-point iterations are performed between neutronics and thermal-hydraulics calculations. Neutronics calculations include the generation of two-group macroscopic cross sections at several axial positions, taking into account local parameters such as coolant temperature and density and average fuel temperature. The coolant flow rate is adjusted so that the outlet temperature of the coolant corresponds to the SCWR technical specifications. The converged axial power distribution is found to be asymmetric, resembling a cosine shape skewed toward the inlet (reactor top).


Author(s):  
Yuanyu Wu ◽  
Hong Yu ◽  
Lixia Ren ◽  
Wenjun Hu ◽  
Hongtao Qian

Inherent safety properties of reactor have always played an important role in severe accidents preventing and consequences mitigation. With proper design, reactivity feedback mechanisms can bring benign reactivity feedbacks to the reactor core during unprotected transients, thus contributing to the severe accidents mitigation. In overpower transients, the increasing power causes the fuel temperature to increase, which directly brings fuel Doppler feedback and core axial expansion feedback. In unprotected loss-of-flow accidents, as the flow rate decreases, the mismatch of power and flow causes the increase of coolant temperature, thus directly resulting in the coolant reactivity, core radial expansion as well as the control rod driveline expansion feedbacks. Through the simulation of China Experimental Fast Reactor (CEFR) unprotected transients, the influences of different reactivity feedback mechanisms have been investigated and analyzed. The coolant reactivity exhibits significant negative feedback and makes the dominant contribution in controlling the reactivity in both UTOP and ULOF transients.


Author(s):  
L. Holt ◽  
U. Rohde ◽  
M. Seidl ◽  
A. Schubert ◽  
P. Van Uffelen ◽  
...  

In the last two decades the reactor dynamics code DYN3D was coupled to thermal hydraulics system codes, a sub-channel thermal hydraulics code and CFD codes. These earlier developed code systems allow modeling of the thermal hydraulics phenomena occurring during reactor transients and accidents in greater detail. Still these code systems lack a sufficiently sophisticated fuel behavior model, which is able i.e. to take into account the fission gas behavior during normal operation, off-normal conditions and transients. To our knowledge a two-way coupling to a fuel performance code hasn’t so far been reported in the open literature for calculating a full core with detailed and well validated fuel behavior models. A new two-way coupling approach between DYN3D and the fuel performance code TRANSURANUS is presented. In the coupling, DYN3D provides the time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in turn transfers parameters like fuel temperature and cladding temperature back to DYN3D. The main part of the development is a general TRANSURANUS coupling interface that is applicable for linking of any other reactor dynamics codes, thermal hydraulics system codes and sub-channel codes to TRANSURANUS. Beside its generality, other features of this interface are the application at either fuel assembly or fuel rod level, one-way or two-way coupling, automatic switching from steady to transient conditions in TRANSURANUS (including update of the material properties etc.), writing of all TRANSURANUS output files and the possibility of manual pre- and post-calculations with TRANSURANUS in standalone mode. The TRANSURANUS code can be used in combination with this coupling interface in various scenarios: different fuel compositions in the reactor types BWR, PWR, VVER, HWR and FBR, considering time scales from milliseconds (i.e. RIA) over seconds/ minutes (i.e. LOCA) to years (i.e. normal operation) and thence different reactor states. Results of DYN3D-TRANSURANUS are shown for a control rod ejection transient in a German PWR. In particular, it appears that for all burn-up levels the two-way coupling approach systematically calculates higher maximum values for the node fuel enthalpy (max. difference of 46 J/g) and node centerline fuel temperature (max. difference of 181 K), compared to DYN3D standalone in best estimate calculations. These differences can be completely explained by the more detailed TRANSURANUS modeling of fuel thermal conductivity, radial power density profile and heat transfer in the gap. As known from fuel performance codes, the modeling of the heat transfer in the gap is sensitive and causes also larger differences in case of low burn-up. The numerical convergence for DYN3D-TRANSURANUS is quick and stable. The coupled code system can improve the assessment of safety criteria, at a reasonable computational cost with a CPU time of less than seven hours without parallelization.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-13
Author(s):  
Liem Peng Hong ◽  
Pinem Surian ◽  
Sembiring Tagor Malem ◽  
Nam Tran Hoai

A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA).The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducted to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed


2015 ◽  
Vol 17 (3) ◽  
pp. 141 ◽  
Author(s):  
Tagor Malem Sembiring ◽  
Surian Pinem ◽  
Peng Hong Liem

ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.  ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H), NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR) di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program NODAL3 untuk kasus penarikan sebuah CR atau sekelompok CR yang tidak-simetris dapat divalidasi.  Perhitungan paket program NODAL3 dilakukan dengan metode adiabatic (AM) dan improved quasistatic (IQS).  Seluruh parameter gayut waktu hasil perhitungan paket program NODAL3 dibandingkan dengan hasil acuan dengan paket program PANTHER. Perbedaan relatif maksimum sebesar 16% terjadi dalam perhitungan parameter waktu daya maksimum dengan metode IQS pada kasus C2, sedangkan perbedaan relatif dengan metode AM adalah 4%. Seluruh hasil perhitungan dengan paket program NODAL3 menunjukkan tidak adanya perbedaan yang sistematis, berarti modul neutronik dan T/H yang diadopsi di NODAL3 sudah benar. Oleh karena itu, seluruh perhitungan dengan paket program NODAL3 sangat sesuai dengan hasil acuan. Kata kunci: metode nodal, paket program kopel neutonik dan termo-hidrolika, kasus gayut-waktu, tertariknya batang kendali.


Sign in / Sign up

Export Citation Format

Share Document