scholarly journals An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Lili Zhang ◽  
Qing Ye ◽  
Yehong Shao ◽  
Chenming Li ◽  
Hongmin Gao

Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Jinfang Sheng ◽  
Ben Lu ◽  
Bin Wang ◽  
Jie Hu ◽  
Kai Wang ◽  
...  

The research on complex networks is a hot topic in many fields, among which community detection is a complex and meaningful process, which plays an important role in researching the characteristics of complex networks. Community structure is a common feature in the network. Given a graph, the process of uncovering its community structure is called community detection. Many community detection algorithms from different perspectives have been proposed. Achieving stable and accurate community division is still a non-trivial task due to the difficulty of setting specific parameters, high randomness and lack of ground-truth information. In this paper, we explore a new decision-making method through real-life communication and propose a preferential decision model based on dynamic relationships applied to dynamic systems. We apply this model to the label propagation algorithm and present a Community Detection based on Preferential Decision Model, called CDPD. This model intuitively aims to reveal the topological structure and the hierarchical structure between networks. By analyzing the structural characteristics of complex networks and mining the tightness between nodes, the priority of neighbor nodes is chosen to perform the required preferential decision, and finally the information in the system reaches a stable state. In the experiments, through the comparison of eight comparison algorithms, we verified the performance of CDPD in real-world networks and synthetic networks. The results show that CDPD not only has better performance than most recent algorithms on most datasets, but it is also more suitable for many community networks with ambiguous structure, especially sparse networks.


2020 ◽  
Vol 10 (9) ◽  
pp. 3126
Author(s):  
Desheng Lyu ◽  
Bei Wang ◽  
Weizhe Zhang

With the development of network technology and the continuous advancement of society, the combination of various industries and the Internet has produced many large-scale complex networks. A common feature of complex networks is the community structure, which divides the network into clusters with tight internal connections and loose external connections. The community structure reveals the important structure and topological characteristics of the network. The detection of the community structure plays an important role in social network analysis and information recommendation. Therefore, based on the relevant theory of complex networks, this paper introduces several common community detection algorithms, analyzes the principles of particle swarm optimization (PSO) and genetic algorithm and proposes a particle swarm-genetic algorithm based on the hybrid algorithm strategy. According to the test function, the single and the proposed algorithm are tested, respectively. The results show that the algorithm can maintain the good local search performance of the particle swarm optimization algorithm and also utilizes the good global search ability of the genetic algorithm (GA) and has good algorithm performance. Experiments on each community detection algorithm on real network and artificially generated network data sets show that the particle swarm-genetic algorithm has better efficiency in large-scale complex real networks or artificially generated networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fanrong Meng ◽  
Feng Zhang ◽  
Mu Zhu ◽  
Yan Xing ◽  
Zhixiao Wang ◽  
...  

Community detection in complex networks has become a research hotspot in recent years. However, most of the existing community detection algorithms are designed for the static networks; namely, the connections between the nodes are invariable. In this paper, we propose an incremental density-based link clustering algorithm for community detection in dynamic networks, iDBLINK. This algorithm is an extended version of DBLINK which is proposed in our previous work. It can update the local link community structure in the current moment through the change of similarity between the edges at the adjacent moments, which includes the creation, growth, merging, deletion, contraction, and division of link communities. Extensive experimental results demonstrate that iDBLINK not only has a great time efficiency, but also maintains a high quality community detection performance when the network topology is changing.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1383
Author(s):  
Jinfang Sheng ◽  
Cheng Liu ◽  
Long Chen ◽  
Bin Wang ◽  
Junkai Zhang

With the rapid development of computer technology, the research on complex networks has attracted more and more attention. At present, the research directions of cloud computing, big data, internet of vehicles, and distributed systems with very high attention are all based on complex networks. Community structure detection is a very important and meaningful research hotspot in complex networks. It is a difficult task to quickly and accurately divide the community structure and run it on large-scale networks. In this paper, we put forward a new community detection approach based on internode attraction, named IACD. This algorithm starts from the perspective of the important nodes of the complex network and refers to the gravitational relationship between two objects in physics to represent the forces between nodes in the network dataset, and then perform community detection. Through experiments on a large number of real-world datasets and synthetic networks, it is shown that the IACD algorithm can quickly and accurately divide the community structure, and it is superior to some classic algorithms and recently proposed algorithms.


2014 ◽  
Vol 28 (09) ◽  
pp. 1450074 ◽  
Author(s):  
Benyan Chen ◽  
Ju Xiang ◽  
Ke Hu ◽  
Yi Tang

Community structure is an important topological property common to many social, biological and technological networks. First, by using the concept of the structural weight, we introduced an improved version of the betweenness algorithm of Girvan and Newman to detect communities in networks without (intrinsic) edge weight and then extended it to networks with (intrinsic) edge weight. The improved algorithm was tested on both artificial and real-world networks, and the results show that it can more effectively detect communities in networks both with and without (intrinsic) edge weight. Moreover, the technique for improving the betweenness algorithm in the paper may be directly applied to other community detection algorithms.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Hocine Cherifi ◽  
Gergely Palla ◽  
Boleslaw K. Szymanski ◽  
Xiaoyan Lu

AbstractCommunity structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of a large interdisciplinary community of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed in order to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we follow with an overview of the Stochastic Block Model and its different variants as well as inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear, and in parallel new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.


2012 ◽  
Vol 6-7 ◽  
pp. 985-990
Author(s):  
Yan Peng ◽  
Yan Min Li ◽  
Lan Huang ◽  
Long Ju Wu ◽  
Gui Shen Wang ◽  
...  

Community structure detection has great importance in finding the relationships of elements in complex networks. This paper presents a method of simultaneously taking into account the weak community structure definition and community subgraph density, based on the greedy strategy for community expansion. The results are compared with several previous methods on artificial networks and real world networks. And experimental results verify the feasibility and effectiveness of our approach.


2020 ◽  
Author(s):  
Vesa Kuikka

Abstract We present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. We illustrate the community detection methods with two small network topologies. In case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


Sign in / Sign up

Export Citation Format

Share Document