scholarly journals On community structure in complex networks: challenges and opportunities

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Hocine Cherifi ◽  
Gergely Palla ◽  
Boleslaw K. Szymanski ◽  
Xiaoyan Lu

AbstractCommunity structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of a large interdisciplinary community of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed in order to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we follow with an overview of the Stochastic Block Model and its different variants as well as inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear, and in parallel new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fanrong Meng ◽  
Feng Zhang ◽  
Mu Zhu ◽  
Yan Xing ◽  
Zhixiao Wang ◽  
...  

Community detection in complex networks has become a research hotspot in recent years. However, most of the existing community detection algorithms are designed for the static networks; namely, the connections between the nodes are invariable. In this paper, we propose an incremental density-based link clustering algorithm for community detection in dynamic networks, iDBLINK. This algorithm is an extended version of DBLINK which is proposed in our previous work. It can update the local link community structure in the current moment through the change of similarity between the edges at the adjacent moments, which includes the creation, growth, merging, deletion, contraction, and division of link communities. Extensive experimental results demonstrate that iDBLINK not only has a great time efficiency, but also maintains a high quality community detection performance when the network topology is changing.


2014 ◽  
Vol 28 (09) ◽  
pp. 1450074 ◽  
Author(s):  
Benyan Chen ◽  
Ju Xiang ◽  
Ke Hu ◽  
Yi Tang

Community structure is an important topological property common to many social, biological and technological networks. First, by using the concept of the structural weight, we introduced an improved version of the betweenness algorithm of Girvan and Newman to detect communities in networks without (intrinsic) edge weight and then extended it to networks with (intrinsic) edge weight. The improved algorithm was tested on both artificial and real-world networks, and the results show that it can more effectively detect communities in networks both with and without (intrinsic) edge weight. Moreover, the technique for improving the betweenness algorithm in the paper may be directly applied to other community detection algorithms.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1382 ◽  
Author(s):  
Mo Hai  ◽  
Haifeng Li ◽  
Zhekun Ma ◽  
Xiaomei Gao

With the explosive growth of the scale of complex networks, the existing community detection algorithms are unable to meet the needs of rapid analysis of the community structure in complex networks. A new algorithm for detecting communities in complex networks based on the Hadoop platform (called Community Detection on Hadoop (CDOH)) is proposed in this paper. Based on the basic idea of modularity increment, our algorithm implements parallel merging and accomplishes a fast and accurate detection of the community structure in complex networks. Our extensive experimental results on three real datasets of complex networks demonstrate that the CDOH algorithm can improve the efficiency of the current memory-based community detection algorithms significantly without affecting the accuracy of the community detection.


2020 ◽  
Vol 34 (14) ◽  
pp. 2050143
Author(s):  
Wen Zhou ◽  
Shuaiqin Zhao

One important characteristic of complex networks is community structure. How to effectively divide the potential community structure of complex networks has been the focus of scholars because communities may have very different properties than the network. A community is usually defined as a collection of nodes with similar attributes. Generally, nodes in the same community are relatively densely connected to each other, compared with nodes from different communities. From the perspective of clustering, nodes in the same community can be considered as having higher similarities. Therefore, using graph clustering algorithms for community detection is theoretically feasible. Collaborative networks are special complex networks. A collaborative relationship tends to connect to multiple collaborators, which makes it hard to build collaborative networks by abstracting the collaboration into edges. Based on characteristics of the collaborative network, we expand the cluster similarity index and propose a gravitational coefficient index to measure the similarity of nodes and subsequently design community detection algorithms. Experiments using real datasets show that the proposed algorithm can obtain higher quality community partitioning results and avoid falling into local optimal solutions to obtain larger-scale communities than classical community detection algorithms.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2021 ◽  
pp. 1-17
Author(s):  
Mohammed Al-Andoli ◽  
Wooi Ping Cheah ◽  
Shing Chiang Tan

Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the problem of community detection. However, existing models in the literature are trained based on gradient descent optimization with the backpropagation algorithm, which is known to converge to local minima and prove inefficient, especially in big data scenarios. To tackle these drawbacks, this work proposed a novel deep autoencoder with Particle Swarm Optimization (PSO) and continuation algorithms to reveal community structures in complex networks. The PSO and continuation algorithms were utilized to avoid the local minimum and premature convergence, and to reduce overall training execution time. Two objective functions were also employed in the proposed model: minimizing the cost function of the autoencoder, and maximizing the modularity function, which refers to the quality of the detected communities. This work also proposed other methods to work in the absence of continuation, and to enable premature convergence. Extensive empirical experiments on 11 publically-available real-world datasets demonstrated that the proposed method is effective and promising for deriving communities in complex networks, as well as outperforming state-of-the-art deep learning community detection algorithms.


2015 ◽  
Vol 719-720 ◽  
pp. 1198-1202
Author(s):  
Ming Yang Zhou ◽  
Zhong Qian Fu ◽  
Zhao Zhuo

Practical networks have community and hierarchical structure. These complex structures confuse the community detection algorithms and obscure the boundaries of communities. This paper proposes a delicate method which synthesizes spectral analysis and local synchronization to detect communities. Communities emerge automatically in the multi-dimension space of nontrivial eigenvectors. Its performance is compared to that of previous methods and applied to different practical networks. Our results perform better than that of other methods. Besides, it’s more robust for networks whose communities have different edge density and follow various degree distributions. This makes the algorithm a valuable tool to detect and analysis large practical networks with various community structures.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jianjun Cheng ◽  
Wenbo Zhang ◽  
Haijuan Yang ◽  
Xing Su ◽  
Tao Ma ◽  
...  

The centrality plays an important role in many community-detection algorithms, which depend on various kinds of centralities to identify seed vertices of communities first and then expand each of communities based on the seeds to get the resulting community structure. The traditional algorithms always use a single centrality measure to recognize seed vertices from the network, but each centrality measure has both pros and cons when being used in this circumstance; hence seed vertices identified using a single centrality measure might not be the best ones. In this paper, we propose a framework which integrates advantages of various centrality measures to identify the seed vertices from the network based on the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) multiattribute decision-making technology. We take each of the centrality measures involved as an attribute, rank vertices according to the scores which are calculated for them using TOPSIS, and then take vertices with top ranks as the seeds. To put this framework into practice, we concretize it in this paper by considering four centrality measures as attributes to identify the seed vertices of communities first, then expanding communities by iteratively inserting one unclassified vertex into the community to which its most similar neighbor belongs, and the similarity between them is the largest among all pairs of vertices. After that, we obtain the initial community structure. However, the amount of communities might be much more than they should be, and some communities might be too small to make sense. Therefore, we finally consider a postprocessing procedure to merge some initial communities into larger ones to acquire the resulting community structure. To test the effectiveness of the proposed framework and method, we have performed extensive experiments on both some synthetic networks and some real-world networks; the experimental results show that the proposed method can get better results, and the quality of the detected community structure is much higher than those of competitors.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Jinfang Sheng ◽  
Ben Lu ◽  
Bin Wang ◽  
Jie Hu ◽  
Kai Wang ◽  
...  

The research on complex networks is a hot topic in many fields, among which community detection is a complex and meaningful process, which plays an important role in researching the characteristics of complex networks. Community structure is a common feature in the network. Given a graph, the process of uncovering its community structure is called community detection. Many community detection algorithms from different perspectives have been proposed. Achieving stable and accurate community division is still a non-trivial task due to the difficulty of setting specific parameters, high randomness and lack of ground-truth information. In this paper, we explore a new decision-making method through real-life communication and propose a preferential decision model based on dynamic relationships applied to dynamic systems. We apply this model to the label propagation algorithm and present a Community Detection based on Preferential Decision Model, called CDPD. This model intuitively aims to reveal the topological structure and the hierarchical structure between networks. By analyzing the structural characteristics of complex networks and mining the tightness between nodes, the priority of neighbor nodes is chosen to perform the required preferential decision, and finally the information in the system reaches a stable state. In the experiments, through the comparison of eight comparison algorithms, we verified the performance of CDPD in real-world networks and synthetic networks. The results show that CDPD not only has better performance than most recent algorithms on most datasets, but it is also more suitable for many community networks with ambiguous structure, especially sparse networks.


Sign in / Sign up

Export Citation Format

Share Document