scholarly journals 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Clara Sciorati ◽  
Antonio Esposito ◽  
Lara Campana ◽  
Tamara Canu ◽  
Antonella Monno ◽  
...  

Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI) provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS). Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase) was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studyingin vivoimmune-mediated muscle involvement.

1988 ◽  
Vol 11 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Kiichiro Matsumura ◽  
Imaharu Nakano ◽  
Nobuo Fukuda ◽  
Hiroo Ikehira ◽  
Yukio Tateno ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4586
Author(s):  
Marta Orts-Arroyo ◽  
Amadeo Ten-Esteve ◽  
Sonia Ginés-Cárdenas ◽  
Isabel Castro ◽  
Luis Martí-Bonmatí ◽  
...  

The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX, and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively. On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable candidate for contrast-enhanced magnetic resonance imaging.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuan Vinh To ◽  
Fatima A. Nasrallah

AbstractThis data collection contains Magnetic Resonance Imaging (MRI) data, including structural, diffusion, stimulus-evoked, and resting-state functional MRI and behavioural assessment results, including acute post-impact Loss-of-Righting Reflex time and acute, subacute, and longer-term Neural Severity Score, and Open Field Behaviour obtained from a mouse model of concussion. Four cohorts with 43 3–4 months old male mice in total were used: Sham (n = 14, n = 6 day 2, n = 3 day 7, n = 5 day 14), concussion day 2 (CON 2; n = 9), concussion day 7 (CON 7; n = 10), concussion day 14 (CON 14; n = 10). The data collection contains the aforementioned MRI data in compressed NIFTI format, data sheets on animal’s backgrounds and behavioural outcomes and is made publicly available from a data repository. The available data are intended to facility cross-study comparisons, meta-analysis, and science reproducibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang Ding ◽  
Yu Guo ◽  
Xiaoya Chen ◽  
Silin Du ◽  
Yongliang Han ◽  
...  

AbstractThe aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.


HPB ◽  
2016 ◽  
Vol 18 ◽  
pp. e152-e153
Author(s):  
D.P.J. van Dijk ◽  
S. Sanduleanu ◽  
F.C.H. Bakers ◽  
S.S. Rensen ◽  
C.H.C. Dejong ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109872 ◽  
Author(s):  
Manoj Kumar ◽  
Jeffery T. Duda ◽  
Wei-Ting Hwang ◽  
Charles Kenworthy ◽  
Ranjit Ittyerah ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 421-428
Author(s):  
Tessa E. Morris‐Paterson ◽  
Stephen A. Stimpson ◽  
Ram R. Miller ◽  
Matthew E. Barton ◽  
Michael S. Leonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document