scholarly journals Isolation and Expression Analysis of Novel Silicon Absorption Gene from Roots of Mangrove(Rhizophora apiculata) viaSuppression Subtractive Hybridization

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mahbod Sahebi ◽  
Mohamed M. Hanafi ◽  
Siti Nor Akmar Abdullah ◽  
Mohd Y. Rafii ◽  
Parisa Azizi ◽  
...  

Silicon (Si) is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots’ cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes inRhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene ofserine-rich protein.

2015 ◽  
Vol 101 (1-2) ◽  
pp. 3-19 ◽  
Author(s):  
Swagat Kumar Das ◽  
Jayanta Kumar Patra ◽  
Hrudayanath Thatoi

Genetika ◽  
2015 ◽  
Vol 47 (3) ◽  
pp. 1149-1164 ◽  
Author(s):  
Snezana Milosevic ◽  
Aleksandar Cingel ◽  
Angelina Subotic

Integration of desirable traits into commercial ornamentals using genetic engineering techniques is a powerful tool in contemporary biotechnology. However, these techniques have had a limited impact in the domain of ornamental horticulture, particularly floriculture. Modifications of the color, architecture or fragrance of the flowers as well as an improvement of the plant tolerance/resistance against abiotic and biotic stresses using plant transformation techniques, is still in its infancy. This review focuses on the application of Agrobacterium-mediated transformation, a major plant genetic engineering approach to ornamental plant breeding and the impact it has had to date.


Author(s):  
А.И. Белолюбцев ◽  
Е.А. Дронова ◽  
И.Ф. Асауляк

Основные исследования выполнены в стационарном полевом опыте М-01-18-ОП, который был заложен осенью 1980 года профессором И. С. Кочетовым на экспериментальной базе учебно-опытного хозяйства «Михайловское» в Московской области. История ведения опыта включает два периода. В первый период (1980–1989 годы) проводился трёхфакторный опыт. Во второй период (с 1990 года) с учётом дальнейшего совершенствования систем земледелия, комплексного изучения принципов и приёмов обработки почвы, построения на этой основе принципиально новых ландшафтных систем земледелия для эрозионно опасных территорий полевой опыт был модернизирован в двухфакторный. Показано, что при разработке и освоении севооборотов на склоновых территориях в рамках адаптивно-ландшафтных экологически сбалансированных систем земледелия необходимо в максимальной степени учитывать зональные особенности природных ландшафтов (климат, микроклимат, рельеф, почвенный и растительный покровы и другие факторы). При этом крайне важно учитывать средообразующую и почвозащитную способность каждой полевой культуры, её реакцию на степень эродированности почв, экспозицию и крутизну склонов, а также условия перезимовки, особенно на фоне современных изменений климата в сторону потепления. Самый высокий почвозащитный эффект при интенсивном использовании пашни склоновых земель в условиях наиболее активного развития эрозионных процессов (склон 8º) получен при возделывании бобово-злаковой смеси 1-го года пользования. Хорошо раскустившиеся с осени, с высоким проективным покрытием и закреплением почвы корневой системой, на фоне относительно благоприятных инфильтрационных свойств почвы травы обеспечили минимальные потери мелкозёма (0,12 т/га) в сравнении с другими культурами севооборота. Однако с возрастом с учётом указанных выше негативных обстоятельств почвозащитная (0,22т/га) и стокорегулирующая (22 мм) роль многолетних трав снижается. В этой связи возникает необходимость оптимизации состава травосмеси на принципах соответствия её компонентов местообитанию и устойчивости к неблагоприятным погодным воздействиям зимних периодов. The field trial (M-01-18-OP) was started by I. S. Kochetov in 1980 at the research farm “Mikhaylovskoe” in the Moscow region. In the period of 1980–1989 the effects of three factors were analyzed. Starting from 1990 the trial was modified into the two-factorial one due to the new improved farming systems and tillage techniques for low-quality soil. Crop rotation on highlands should be performed considering climate, environment, local topography, soil, plant cover etc. It is important to take into account habitat-forming and soil-conserving ability of each crop as well as its response to soil damage, landscape and winter conditions particularly under current global warming. Cultivation of legumes and gramineous together for 1 year had significant positive effect on highly damaged soil (plot 8º). Grasses showed good tillering capacity, soil coverage and root formation minimizing the loss of fine soil (0.12 t ha-1) on the background of favorable soil structure. However, soil-conserving (0.22 t ha-1) and flow-regulating capacities (22 mm) of perennial grasses decrease with the time. Therefore, optimal plant composition of such mixtures are of great importance with regard to plant tolerance to abiotic and biotic stresses.


2020 ◽  
Vol 26 ◽  
Author(s):  
Longna Li ◽  
Wang Lou ◽  
Lingshuai Kong ◽  
Wenbiao Shen

Abstract:: The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environment pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to low carbon economy, and has great potential to provide “safe, tasty, healthy, and highyield” agricultural products so that it may improve the sustainability of agriculture.


2011 ◽  
Vol 12 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Ederson Akio Kido ◽  
Pedranne Kelle de Araujo Barbosa ◽  
Jose Ribamar Costa Ferreira Neto ◽  
Valesca Pandolfi ◽  
Laureen Michelle Houllou-Kido ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


2015 ◽  
Vol 59 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Haitao Shi ◽  
Yongqiang Qian ◽  
Dun‐Xian Tan ◽  
Russel J. Reiter ◽  
Chaozu He

Sign in / Sign up

Export Citation Format

Share Document