scholarly journals Prediction of Four Kinds of Simple Supersecondary Structures in Protein by Using Chemical Shifts

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Feng Yonge

Knowledge of supersecondary structures can provide important information about its spatial structure of protein. Some approaches have been developed for the prediction of protein supersecondary structure. However, the feature used by these approaches is primarily based on amino acid sequences. In this study, a novel model is presented to predict protein supersecondary structure by use of chemical shifts (CSs) information derived from nuclear magnetic resonance (NMR) spectroscopy. Using these CSs as inputs of the method of quadratic discriminant analysis (QD), we achieve the overall prediction accuracy of 77.3%, which is competitive with the same method for predicting supersecondary structures from amino acid compositions in threefold cross-validation. Moreover, our finding suggests that the combined use of different chemical shifts will influence the accuracy of prediction.

2019 ◽  
Vol 9 (4) ◽  
pp. 4077-4084

The concept of molecular sonification comprises total steps of methods that convert the physical data derived from chemical systems into acousmatic music. NMR data of the 13C are especially well suited data sources for Insulin sonification. Even though their resonant frequencies are typically in the MHz region, the resonant frequencies span around kHz. The human insulin is consisting of 51 amino acids which can be divided into 7 series of amino acids for seven octaves of notes. During NMR calculation with ab-initio methods, these signals are routinely mixed down into the audible frequencies ranges, rendering the need for any additional frequencies transpositions unnecessary. By this work, insulin protein sequences into musical notes to reveal auditory algorithms have been converted. Calculation and optimization of 20 amino acids have been done and the total frequencies of each amino acid have been converted to 20 music notes and distinguishing those using variations of chemical shifts including pitch, time duration length of notes and even rhythm have been accomplished.


2007 ◽  
Vol 18 (10) ◽  
pp. 1513-1526 ◽  
Author(s):  
HAEJIN KIM ◽  
EUN-JOUNG MOON ◽  
SUNGCHUL MOON ◽  
HO-JIN JUNG ◽  
YOUNG-LYEOL YANG ◽  
...  

Several computational methods have been developed to solve the problem of protein thermostabilization. One common drawback of them is that they must have the information of a backbone structure of a protein for the generation of a proper amino acid sequence. In this paper, we propose a new method called TargetStar by incorporating computational biology and statistical physics, in which an approximate partition function and a specific heat are used to calculate the folding transition temperature of a protein and then to predict the relative thermal stabilities for given proteins based only on their amino acid sequences. To evaluate the prediction accuracy of TargetStar, we calculated folding transition temperatures of 289 orthologous protein pairs using the proposed method, where each protein pair contains one hyperthermophilic protein and one mesophilic protein. According to our evaluation, hyperthermophilic and mesophilic proteins are distinguished from each other in terms of relative thermal stabilities with 77% prediction accuracy. Thus, TargetStar may serve as an efficient method to design an amino acid sequence of a target protein with the desired thermal stability prior to the expensive and time-consuming mutagenesis experiment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rahu Sikander ◽  
Yuping Wang ◽  
Ali Ghulam ◽  
Xianjuan Wu

Predicting the protein sequence information of enzymes and non-enzymes is an important but a very challenging task. Existing methods use protein geometric structures only or protein sequences alone to predict enzymatic functions. Thus, their prediction results are unsatisfactory. In this paper, we propose a novel approach for predicting the amino acid sequences of enzymes and non-enzymes via Convolutional Neural Network (CNN). In CNN, the roles of enzymes are predicted from multiple sides of biological information, including information on sequences and structures. We propose the use of two-dimensional data via 2DCNN to predict the proteins of enzymes and non-enzymes by using the same fivefold cross-validation function. We also use an independent dataset to test the performance of our model, and the results demonstrate that we are able to solve the overfitting problem. We used the CNN model proposed herein to demonstrate the superiority of our model for classifying an entire set of filters, such as 32, 64, and 128 parameters, with the fivefold validation test set as the independent classification. Via the Dipeptide Deviation from Expected Mean (DDE) matrix, mutation information is extracted from amino acid sequences and structural information with the distance and angle of amino acids is conveyed. The derived feature maps are then encoded in DDE exploitation. The independent datasets are then compared with other two methods, namely, GRU and XGBOOST. All analyses were conducted using 32, 64 and 128 filters on our proposed CNN method. The cross-validation datasets achieved an accuracy score of 0.8762%, whereas the accuracy of independent datasets was 0.7621%. Additional variables were derived on the basis of ROC AUC with fivefold cross-validation was achieved score is 0.95%. The performance of our model and that of other models in terms of sensitivity (0.9028%) and specificity (0.8497%) was compared. The overall accuracy of our model was 0.9133% compared with 0.8310% for the other model.


1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


1979 ◽  
Author(s):  
Takashi Morita ◽  
Craig Jackson

Bovine Factor X is eluted in two forms (X1and X2) from anion exchange chromatographic columns. These two forms have indistinguishable amino acid compositions, molecular weights and specific activities. The amino acid sequences containing the γ-carboxyglutamic acid residues have been shown to be identical in X1 and X2(H. Morris, personal communication). An activation peptide is released from the N-terminal region of the heavy chain of Factor X by an activator from Russell’s viper venom. This peptide can be isolated after activation by gel filtration on Sephadex G-100 under nondenaturing conditions. The activation peptides from a mixture of Factors X1 and X2 were separated into two forms by anion-exchange chromatography. The activation peptide (AP1) which eluted first was shown to be derived from Factor X1. while the activation peptiae (AP2) which eluted second was shown to be derived from X2 on the basis of chromatographic separations carried out on Factors X1 and X2 separately. Factor Xa was eluted as a symmetrical single peak. On the basis of these and other data characterizing these products, we conclude that the difference between X1 and X2 are properties of the structures of the activation peptides. (Supported by a grant HL 12820 from the National Heart, Lung and Blood Institute. C.M.J. is an Established Investigator of the American Heart Association).


2020 ◽  
Vol 44 (3) ◽  
pp. 177-189
Author(s):  
Momir Dunjic ◽  
Stefano Turini ◽  
Dejan Krstic ◽  
Katarina Dunjic ◽  
Marija Dunjic ◽  
...  

Radiofrequency therapy is an unconventional method, already applied for some time, with numerous results in numerous clinical pictures. Our group has developed a software, later called SONGENPROT-SOLARIS, capable of directly converting nucleotide sequences (DNA and/or RNA) and amino acid sequences (polypeptides and proteins) into musical sequences, based on mathematic matrices, designed by the French physicist and musician Joel Sternheimer, which allows to associate a musical note with a nucleotide or an amino acid. Innovation in our software is that, in the algorithm that defines it, a variant is directly implemented that allows the reproduction of sounds, phase-shifted by 30 Hz, between one ear and another reproducing the phenomenon of Binaural Tones, capable of induce a specific brain activity and also the release of particles called solitons. Thanks to this software we have developed a technique called MMT (Molecular Music Therapy) and currently, we are in the phase of applying the technique on a cohort of 91 patients, with a high spectrum of clinical pictures, examining the same, using the technique Bi-Digital-ORing-Test (BDORT), before and after treatment with MMT. Aim of project is to stimulate the expression of a specific gene (the same genetic sequence that the patient listens to, translated into music), only through the use of sound sequences. We have concentrated our attention on three main molecules: Sirtuin-1, Telomers and TP-53. The results obtained with BDORT, after treatment with MMT, showed a significant increase in the values of the three molecules, on all the examined patients, demonstrating the operative efficacy of the technique and the its applicability to numerous diseases. In order to confirm the data obtained by BDORT, we propose, with the help of an accredited laboratory, to perform epigenetic tests on the three parameters listed above, paving the way to understanding how frequencies can influence gene expression.


2019 ◽  
Vol 26 (7) ◽  
pp. 542-549 ◽  
Author(s):  
Shan Shan Hao ◽  
Man Man Zong ◽  
Ze Zhang ◽  
Jia Xi Cai ◽  
Yang Zheng ◽  
...  

Background: Bursa of Fabricius is the acknowledged central humoral immune organ. The bursal-derived peptides play the important roles on the immature B cell development and antibody production. Objective: Here we explored the functions of the new isolated bursal hexapeptide and pentapeptide on the humoral, cellular immune response and antigen presentation to Avian Influenza Virus (AIV) vaccine in mice immunization. Methods: The bursa extract samples were purified following RP HPLC method, and were analyzed with MS/MS to identify the amino acid sequences. Mice were twice subcutaneously injected with AIV inactivated vaccine plus with two new isolated bursal peptides at three dosages, respectively. On two weeks after the second immunization, sera samples were collected from the immunized mice to measure AIV-specific IgG antibody levels and HI antibody titers. Also, on 7th day after the second immunization, lymphocytes were isolated from the immunized mice to detect T cell subtype and lymphocyte viabilities, and the expressions of co-stimulatory molecule on dendritic cells in the immunized mice. Results: Two new bursal hexapeptide and pentapeptide with amino acid sequences KGNRVY and MPPTH were isolated, respectively. Our investigation proved the strong regulatory roles of bursal hexapeptide on AIV-specific IgG levels and HI antibody titers, and lymphocyte viabilities, and the significant increased T cells subpopulation and expressions of MHCII molecule on dendritic cells in the immunized mice. Moreover, our findings verified the significantly enhanced AIV-specific IgG antibody and HI titers, and the strong increased T cell subpopulation and expressions of CD40 molecule on dendritic cells in the mice immunized with AIV vaccine and bursal pentapeptide. Conclusion: We isolated and identified two new hexapeptide and pentapeptide from bursa, and proved that these two bursal peptides effectively induced the AIV-specific antibody, T cell and antigen presentation immune responses, which provided an experimental basis for the further clinical application of the bursal derived active peptide on the vaccine improvement.


Sign in / Sign up

Export Citation Format

Share Document