scholarly journals Genetic Vectors as a Tool in Association Studies: Definitions and Application for Study of Rheumatoid Arthritis

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Igor Sandalov ◽  
Leonid Padyukov

To identify putative relations between different genetic factors in the human genome in the development of common complex disease, we mapped the genetic data to an ensemble of spin chains and analysed the data as a quantum system. Each SNP is considered as a spin with three states corresponding to possible genotypes. The combined genotype represents a multispin state, described by the product of individual-spin states. Each person is characterized by a single genetic vector (GV) and individuals with identical GVs comprise the GV group. This consolidation of genotypes into GVs provides integration of multiple genetic variants for a single statistical test and excludes ambiguity of biological interpretation known for allele and haplotype associations. We analyzed two independent cohorts, with 2633 rheumatoid arthritis cases and 2108 healthy controls, and data for 6 SNPs from the HTR2A locus plus shared epitope allele. We found that GVs based on selected markers are highly informative and overlap for 98.3% of the healthy population between two cohorts. Interestingly, some of the GV groups contain either only controls or only cases, thus demonstrating extreme susceptibility or protection features. By using this new approach we confirmed previously detected univariate associations and demonstrated the most efficient selection of SNPs for combined analyses for functional studies.

2019 ◽  
Author(s):  
Jing Yang ◽  
Amanda McGovern ◽  
Paul Martin ◽  
Kate Duffus ◽  
Xiangyu Ge ◽  
...  

AbstractGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T-cells over 24 hours, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T-cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


2021 ◽  
Author(s):  
Abdullah Abood ◽  
Larry Mesner ◽  
Will Rosenow ◽  
Basel M Al-Barghouthi ◽  
Nina Horwitz ◽  
...  

Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 associations influencing BMD. It has been shown that perturbations to long non-coding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor SNPs demonstrating AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (FDR correction<0.05) with BMD through TWAS and had a colocalizing eQTL (regional colocalization probability (RCP)>0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations and suggest that lncRNAs play a role in the genetics of osteoporosis.


2018 ◽  
Author(s):  
Amy P. Webster ◽  
Darren Plant ◽  
Simone Ecker ◽  
Flore Zufferey ◽  
Jordana T. Bell ◽  
...  

ABSTRACTBackgroundRheumatoid arthritis is a common autoimmune disorder influenced by both genetic and environmental factors. Epigenome-wide association studies can identify environmentally mediated epigenetic changes such as altered DNA methylation, which may also be influenced by genetic factors. To investigate possible contributions of DNA methylation to the aetiology of rheumatoid arthritis with minimum confounding genetic heterogeneity, we investigated genome-wide DNA methylation in disease discordant monozygotic twin pairs.MethodsGenome-wide DNA methylation was assessed in 79 monozygotic twin pairs discordant for rheumatoid arthritis using the HumanMethylation450 BeadChip array (Illumina). Discordant twins were tested for both differential DNA methylation and methylation variability between RA and healthy twins. The methylation variability signature was then compared with methylation variants from studies of other autoimmune diseases and with an independent healthy population.ResultsWe have identified a differentially variable DNA methylation signature, that suggests multiple stress response pathways may be involved in the aetiology of the disease. This methylation variability signature also highlighted potential epigenetic disruption of multiple RUNX3 transcription factor binding sites as being associated with disease development. Comparison with previously performed epigenome-wide association studies of rheumatoid arthritis and type 1 diabetes identified shared pathways for autoimmune disorders, suggesting that epigenetics plays a role in autoimmunity and offering the possibility of identifying new targets for intervention.ConclusionsThrough genome-wide analysis of DNA methylation in disease discordant monozygotic twins, we have identified a differentially variable DNA methylation signature, in the absence of differential methylation in rheumatoid arthritis. This finding supports the importance of epigenetic variability as an emerging component in autoimmune disorders.


2021 ◽  
Vol 128 (12) ◽  
pp. 1805-1817
Author(s):  
Derek Klarin ◽  
Philip S. Tsao ◽  
Scott M. Damrauer

Peripheral artery disease—atherosclerosis of the abdominal aorta and lower extremity vascular bed—is a complex disease with both environmental and genetic determinants. Unmitigated disease is associated with major functional decline and can lead to chronic limb-threatening ischemia, amputation, and increased mortality. Over the last 10 years, major advances have been made in identifying the genetic basis of this common, complex disease. In this review, we provide an overview of the primary types of genetic analyses performed for peripheral artery disease, including heritability and linkage studies, and more recently biobank-based genome-wide association studies. Looking forward, we highlight areas of future study including efforts to identify causal peripheral artery disease genes, rare variant and structural variant analyses using whole-exome and whole-genome sequencing data, and the need to include individuals of diverse genetic ancestries.


2021 ◽  
Author(s):  
Anu Toropainen ◽  
Lindsey K Stolze ◽  
Tiit Ord ◽  
Michael B Whalen ◽  
Paula Marta Torrell ◽  
...  

Functional consequences of genetic variation in the non-coding human genome are difficult to ascertain despite demonstrated associations to common, complex disease traits. To elucidate properties of functional non-coding SNPs with effects in human endothelial cells (EC), we utilized molecular Quantitative Trait Locus (molQTL) analysis for transcription factor binding, chromatin accessibility, and H3K27 acetylation to nominate a set of likely functional non-coding SNPs. Together with information from genome-wide association studies for vascular disease traits, we tested the ability of 34,344 variants to perturb enhancer function in ECs using the highly multiplexed STARR-seq assay. Of these, 5,592 variants validated, whose enriched attributes included: 1) mutations to TF binding motifs for ETS or AP1 that are regulators of EC state, 2) location in accessible and H3K27ac-marked EC chromatin, and 3) molQTLs associations whereby alleles associate with differences in chromatin accessibility and TF binding across genetically diverse ECs. Next, using pro-inflammatory IL1B as an activator of cell state, we observed robust evidence (>50%) of context-specific SNP effects, underscoring the prevalence of non-coding gene-by-environment (GxE) effects. Lastly, using these cumulative data, we fine-mapped vascular disease loci and highlight evidence suggesting mechanisms by which non-coding SNPs at two loci affect risk for Pulse Pressure/Large Artery Stroke, and Abdominal Aortic Aneurysm through respective effects on transcriptional regulation of POU4F1 and LDAH. Together, we highlight the attributes and context dependence of functional non-coding SNPs, and provide new mechanisms underlying vascular disease risk.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 449.1-449
Author(s):  
S. Mizuki ◽  
K. Horie ◽  
K. Imabayashi ◽  
K. Mishima ◽  
K. Oryoji

Background:In the idividuals with genetic and enviromental risk factors, immune events at mucosal surfaces occur and may precede systemic autoimmunity. Anti-citrullinated protein antibodies (ACPA) are present in the serum for an average of 3-5 years prior to the onset of rheumatoid arthritis (RA) during an asymptomatic period. In ACPA-positivite individuals, the additional presence of RA-related risk factors appears to add significant power for the development of RA. To date, there have been few reports in which clinical courses of ACPA-positive asymptomatic individuals were investigated prospectively.Objectives:To observe the clinical time course of ACPA-positive healthy population for the development of RA.Methods:Healthy volunteers without joint pain or stiffness, who attended the comprehensive health screening of our hospital, were enrolled in this prospective observational study. The serum ACPA levels were quantified by Ig-G anti-cyclic citrullinated peptide enzyme-linked immunosorbent assay with levels > 4.4 U/mL considered positive. ACPA-positive subjects were followed by rheumatologists of our department clinically or a questionnaire sent by mail for screening to detect arthritis.Results:5,971 healthy individuals without joint symptons were included. Ninty-two (1.5%) were positive for ACPA. Of these, 19 (20.7%) developed RA and two were suspected as RA by mail questionnaire. Their average age were 58-years, and women were 68%. The average duration between the date of serum sampling and diagnosis was 10.7 months. ACPA-positive individuals who developed to RA had higher serum ACPA and Ig-M rheumatoid factor levels than ACPA-positive individuals who did not (P value by Mann-Whitney U test: 0.002, 0.005, respectively).Conclusion:Among ACPA-positive asymptomatic individuals, 20% developed RA. The higher titer of ACPA and Ig-M rheumatoid factor levels are risk factors for devoloping RA.Disclosure of Interests:None declared


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sangyoon Yi ◽  
Xianyang Zhang ◽  
Lu Yang ◽  
Jinyan Huang ◽  
Yuanhang Liu ◽  
...  

AbstractOne challenge facing omics association studies is the loss of statistical power when adjusting for confounders and multiple testing. The traditional statistical procedure involves fitting a confounder-adjusted regression model for each omics feature, followed by multiple testing correction. Here we show that the traditional procedure is not optimal and present a new approach, 2dFDR, a two-dimensional false discovery rate control procedure, for powerful confounder adjustment in multiple testing. Through extensive evaluation, we demonstrate that 2dFDR is more powerful than the traditional procedure, and in the presence of strong confounding and weak signals, the power improvement could be more than 100%.


Sign in / Sign up

Export Citation Format

Share Document