scholarly journals Energy-Based Spectrum Sensing under Nonreconstruction Framework

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Yulong Gao ◽  
Yanping Chen

To reduce the computational complexity and rest on less prior knowledge, energy-based spectrum sensing under nonreconstruction framework is studied. Compressed measurements are adopted directly to eliminate the effect of reconstruction error and high computational complexity caused by reconstruction algorithm of compressive sensing. Firstly, we summarize the conventional energy-based spectrum sensing methods. Next, the major effort is placed on obtaining the statistical characteristics of compressed measurements and its corresponding squared form, such as mean, variance, and the probability density function. And then, energy-based spectrum sensing under nonreconstruction framework is addressed and its performance is evaluated theoretically and experimentally. Simulations for the different parameters are performed to verify the performance of the presented algorithm. The theoretical analysis and simulation results reveal that the performance drops slightly less than that of conventional energy-normalization method and reconstruction-based spectrum sensing algorithm, but its computational complexity decreases remarkably, which is the first thing one should think about for practical applications. Accordingly, the presented method is reasonable and effective for fast detection in most cognitive scenarios.

Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.


2013 ◽  
Vol 765-767 ◽  
pp. 1307-1311
Author(s):  
Ying Hou ◽  
Hai Huang ◽  
Kai Wang ◽  
Yu Hang Zhu

This paper proposes Bayesian statistical method to identify the video traffic by the symmetrical features and coding statistical characteristics of video calls. According to the problem of high computational complexity of the non-parametric probability density estimate method in the condition of large samples, we propose grid probability density estimation method of gird division to reduce the computational complexity. We present identification results. The experimental results indicate that that this method can effectively detect video call traffic.


2021 ◽  
Vol 11 (7) ◽  
pp. 3083
Author(s):  
Youheng Tan ◽  
Xiaojun Jing

Spectrum sensing (SS) has attracted much attention due to its important role in the improvement of spectrum efficiency. However, the limited sensing time leads to an insufficient sampling point due to the tradeoff between sensing time and communication time. Although the sensing performance of cooperative spectrum sensing (CSS) is greatly improved by mutual cooperation between cognitive nodes, it is at the expense of computational complexity. In this paper, efficient approximations of the N-out-of-K rule-based CSS scheme under heterogeneous cognitive radio networks are provided to obtain the closed-form expression of the sensing threshold at the fusion center (FC), where the false alarm probability and its corresponding detection probability are approximated by the Poisson distribution. The computational complexity required to obtain the optimal sensing threshold at the FC has greatly decreased and theoretical derivations state that the approximation error is negligible. The simulations validate the effectiveness of the proposed scheme.


Recent applications of conventional iterative coordinate descent (ICD) algorithms to multislice helical CT reconstructions have shown that conventional ICD can greatly improve image quality by increasing resolution as well as reducing noise and some artifacts. However, high computational cost and long reconstruction times remain as a barrier to the use of conventional algorithm in the practical applications. Among the various iterative methods that have been studied for conventional, ICD has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a fast model-based iterative reconstruction algorithm using spatially nonhomogeneous ICD (NH-ICD) optimization. The NH-ICD algorithm speeds up convergence by focusing computation where it is most needed. The NH-ICD algorithm has a mechanism that adaptively selects voxels for update. First, a voxel selection criterion VSC determines the voxels in greatest need of update. Then a voxel selection algorithm VSA selects the order of successive voxel updates based upon the need for repeated updates of some locations, while retaining characteristics for global convergence. In order to speed up each voxel update, we also propose a fast 3-D optimization algorithm that uses a quadratic substitute function to upper bound the local 3-D objective function, so that a closed form solution can be obtained rather than using a computationally expensive line search algorithm. The experimental results show that the proposed method accelerates the reconstructions by roughly a factor of three on average for typical 3-D multislice geometries.


2018 ◽  
Vol 1 (1) ◽  
pp. 139-156 ◽  
Author(s):  
Wen-wen Tung ◽  
Ashrith Barthur ◽  
Matthew C. Bowers ◽  
Yuying Song ◽  
John Gerth ◽  
...  

Author(s):  
Ines Elleuch ◽  
Fatma Abdelkefi ◽  
Mohamed Siala

This chapter provides a deep insight into multiple antenna eigenvalue-based spectrum sensing algorithms from a complexity perspective. A review of eigenvalue-based spectrum-sensing algorithms is provided. The chapter presents a finite computational complexity analysis in terms of Floating Point Operations (flop) and a comparison of the Maximum-to-Minimum Eigenvalue (MME) detector and a simplified variant of the Multiple Beam forming detector as well as the Approximated MME method. Constant False Alarm Performances (CFAR) are presented to emphasize the complexity-reliability tradeoff within the spectrum-sensing problem, given the strong requirements on the sensing duration and the detection performance.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986488 ◽  
Author(s):  
Junxin Chen ◽  
Jiazhu Xing ◽  
Leo Yu Zhang ◽  
Lin Qi

In the past decades, compressed sensing emerges as a promising technique for signal acquisition in low-cost sensor networks. For prolonging the monitoring duration of biosignals, compressed sensing is also exploited for simultaneous sampling and compression of electrocardiogram signals in the wireless body sensor network. This article presents a comprehensive analysis of compressed sensing for electrocardiogram acquisition. The performances of involved important factors, such as wavelet basis, overcomplete dictionaries, and the reconstruction algorithms, are comparatively illustrated, with the purpose to give data reference for practical applications. Drawn from a bulk of comparative experiments, the potential of compressed sensing in electrocardiogram acquisition is evaluated in different compression levels, while preferred sparsifying basis and reconstruction algorithm are also suggested. Relative perspectives and discussions are also given.


2020 ◽  
Vol 10 (3) ◽  
pp. 24
Author(s):  
Stefania Preatto ◽  
Andrea Giannini ◽  
Luca Valente ◽  
Guido Masera ◽  
Maurizio Martina

High Efficiency Video Coding (HEVC) is the latest video standard developed by the Joint Video Exploration Team. HEVC is able to offer better compression results than preceding standards but it suffers from a high computational complexity. In particular, one of the most time consuming blocks in HEVC is the fractional-sample interpolation filter, which is used in both the encoding and the decoding processes. Integrating different state-of-the-art techniques, this paper presents an architecture for interpolation filters, able to trade quality for energy and power efficiency by exploiting approximate interpolation filters and by halving the amount of required memory with respect to state-of-the-art implementations.


Sign in / Sign up

Export Citation Format

Share Document