scholarly journals Compressed sensing for electrocardiogram acquisition in wireless body sensor network: A comparative analysis

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986488 ◽  
Author(s):  
Junxin Chen ◽  
Jiazhu Xing ◽  
Leo Yu Zhang ◽  
Lin Qi

In the past decades, compressed sensing emerges as a promising technique for signal acquisition in low-cost sensor networks. For prolonging the monitoring duration of biosignals, compressed sensing is also exploited for simultaneous sampling and compression of electrocardiogram signals in the wireless body sensor network. This article presents a comprehensive analysis of compressed sensing for electrocardiogram acquisition. The performances of involved important factors, such as wavelet basis, overcomplete dictionaries, and the reconstruction algorithms, are comparatively illustrated, with the purpose to give data reference for practical applications. Drawn from a bulk of comparative experiments, the potential of compressed sensing in electrocardiogram acquisition is evaluated in different compression levels, while preferred sparsifying basis and reconstruction algorithm are also suggested. Relative perspectives and discussions are also given.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3531 ◽  
Author(s):  
Lorenzo Manoni ◽  
Claudio Turchetti ◽  
Laura Falaschetti ◽  
Paolo Crippa

Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals from multiple channels yields a large amount of data that increases the power consumption of wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have been developed in recent years with this technique, it is of paramount importance to assess their performance in order to meet the stringent energy constraints imposed in the design of low-power wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a comprehensive comparative study of computational methods for CS reconstruction of EMG signals, giving some useful guidelines in the design of efficient low-power WBANs. For this purpose, four of the most common reconstruction algorithms used in practical applications have been deeply analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been estimated in three different bases. A wide range of experiments are performed on real-world EMG biosignals coming from two different datasets, giving rise to two different independent case studies.


2014 ◽  
Vol 496-500 ◽  
pp. 1739-1743
Author(s):  
Qing Luo ◽  
Bao He Yang ◽  
Dong Mei Li

This paper presents a random sampling method for gas signal,which is based on the principle called compressed sensing. This method is suitable for gas sensor network, and it is conducive to the realization of low power, low cost of the gas sensor network. According to the characteristics of the output signal of gas sensor, we design the random sampling method which acquire the useful information in signal. Using compressed sensing recovery algorithm to reconstruct signal,we finally fulfill complete signal collection. The simulation results show that the method we proposed can achieve signal acquisition with a sampling frequency less than 1/5 of standard sampling frequency.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 126 ◽  
Author(s):  
Bin Wang ◽  
Li Wang ◽  
Hao Yu ◽  
Fengming Xin

The compressed sensing theory has been widely used in solving undetermined equations in various fields and has made remarkable achievements. The regularized smooth L0 (ReSL0) reconstruction algorithm adds an error regularization term to the smooth L0(SL0) algorithm, achieving the reconstruction of the signal well in the presence of noise. However, the ReSL0 reconstruction algorithm still has some flaws. It still chooses the original optimization method of SL0 and the Gauss approximation function, but this method has the problem of a sawtooth effect in the later optimization stage, and the convergence effect is not ideal. Therefore, we make two adjustments to the basis of the ReSL0 reconstruction algorithm: firstly, we introduce another CIPF function which has a better approximation effect than Gauss function; secondly, we combine the steepest descent method and Newton method in terms of the algorithm optimization. Then, a novel regularized recovery algorithm named combined regularized smooth L0 (CReSL0) is proposed. Under the same experimental conditions, the CReSL0 algorithm is compared with other popular reconstruction algorithms. Overall, the CReSL0 algorithm achieves excellent reconstruction performance in terms of the peak signal-to-noise ratio (PSNR) and run-time for both a one-dimensional Gauss signal and two-dimensional image reconstruction tasks.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhou-zhou Liu ◽  
Shi-ning Li

To reconstruct compressed sensing (CS) signal fast and accurately, this paper proposes an improved discrete differential evolution (IDDE) algorithm based on fuzzy clustering for CS reconstruction. Aiming to overcome the shortcomings of traditional CS reconstruction algorithm, such as heavy dependence on sparsity and low precision of reconstruction, a discrete differential evolution (DDE) algorithm based on improved kernel fuzzy clustering is designed. In this algorithm, fuzzy clustering algorithm is used to analyze the evolutionary population, which improves the pertinence and scientificity of population learning evolution while realizing effective clustering. The differential evolutionary particle coding method and evolutionary mechanism are redefined. And the improved fuzzy clustering discrete differential evolution algorithm is applied to CS reconstruction algorithm, in which signal with unknown sparsity is considered as particle coding. Then the wireless sensor networks (WSNs) sparse signal is accurately reconstructed through the iterative evolution of population. Finally, simulations are carried out in the WSNs data acquisition environment. Results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy of the algorithm proposed in this paper is improved by 36.4-51.9%, and the reconstruction time is reduced by 15.1-31.3%.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yudong Zhang ◽  
Bradley S. Peterson ◽  
Genlin Ji ◽  
Zhengchao Dong

The sampling patterns, cost functions, and reconstruction algorithms play important roles in optimizing compressed sensing magnetic resonance imaging (CS-MRI). Simple random sampling patterns did not take into account the energy distribution ink-space and resulted in suboptimal reconstruction of MR images. Therefore, a variety of variable density (VD) based samplings patterns had been developed. To further improve it, we propose a novel energy preserving sampling (ePRESS) method. Besides, we improve the cost function by introducing phase correction and region of support matrix, and we propose iterative thresholding algorithm (ITA) to solve the improved cost function. We evaluate the proposed ePRESS sampling method, improved cost function, and ITA reconstruction algorithm by 2D digital phantom and 2Din vivoMR brains of healthy volunteers. These assessments demonstrate that the proposed ePRESS method performs better than VD, POWER, and BKO; the improved cost function can achieve better reconstruction quality than conventional cost function; and the ITA is faster than SISTA and is competitive with FISTA in terms of computation time.


Author(s):  
Ashok Naganath Shinde ◽  
Sanjay L. Lalbalwar ◽  
Anil B. Nandgaonkar

In signal processing, several applications necessitate the efficient reprocessing and representation of data. Compression is the standard approach that is used for effectively representing the signal. In modern era, many new techniques are developed for compression at the sensing level. Compressed sensing (CS) is a rising domain that is on the basis of disclosure, which is a little gathering of a sparse signal’s linear projections including adequate information for reconstruction. The sampling of the signal is permitted by the CS at a rate underneath the Nyquist sampling rate while relying on the sparsity of the signals. Additionally, the reconstruction of the original signal from some compressive measurements can be authentically exploited using the varied reconstruction algorithms of CS. This paper intends to exploit a new compressive sensing algorithm for reconstructing the signal in bio-medical data. For this purpose, the signal can be compressed by undergoing three stages: designing of stable measurement matrix, signal compression and signal reconstruction. In this, the compression stage includes a new working model that precedes three operations. They are signal transformation, evaluation of [Formula: see text] and normalization. In order to evaluate the theta ([Formula: see text]) value, this paper uses the Haar wavelet matrix function. Further, this paper ensures the betterment of the proposed work by influencing the optimization concept with the evaluation procedure. The vector coefficient of Haar wavelet function is optimally selected using a new optimization algorithm called Average Fitness-based Glowworm Swarm Optimization (AF-GSO) algorithm. Finally, the performance of the proposed model is compared over the traditional methods like Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), Firefly (FF), Crow Search (CS) and Glowworm Swarm Optimization (GSO) algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Wu ◽  
Jinchao Feng ◽  
Kebin Jia ◽  
Xiangyu Wang

Bioluminescence tomography (BLT) has a great potential to provide a powerful tool for tumor detection, monitoring tumor therapy progress, and drug development; developing new reconstruction algorithms will advance the technique to practical applications. In the paper, we propose a BLT reconstruction algorithm by combining SP3equations and Bregman iteration method to improve the quality of reconstructed sources. The numerical results for homogeneous and heterogeneous phantoms are very encouraging and give significant improvement over the algorithms without the use of SP3equations and Bregman iteration method.


2021 ◽  
Vol 15 ◽  
Author(s):  
Biao Sun ◽  
Wenfeng Zhao

This article presents a comprehensive survey of literature on the compressed sensing (CS) of neurophysiology signals. CS is a promising technique to achieve high-fidelity, low-rate, and hardware-efficient neural signal compression tasks for wireless streaming of massively parallel neural recording channels in next-generation neural interface technologies. The main objective is to provide a timely retrospective on applying the CS theory to the extracellular brain signals in the past decade. We will present a comprehensive review on the CS-based neural recording system architecture, the CS encoder hardware exploration and implementation, the sparse representation of neural signals, and the signal reconstruction algorithms. Deep learning-based CS methods are also discussed and compared with the traditional CS-based approaches. We will also extend our discussion to cover the technical challenges and prospects in this emerging field.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254051
Author(s):  
Huixuan Wu ◽  
Pan Du ◽  
Rohan Kokate ◽  
Jian-Xun Wang

Magnetic particle tracking is a recently developed technology that can measure the translation and rotation of a particle in an opaque environment like a turbidity flow and fluidized-bed flow. The trajectory reconstruction usually relies on numerical optimization or filtering, which involve artificial parameters or thresholds. Existing analytical reconstruction algorithms have certain limitations and usually depend on the gradient of the magnetic field, which is not easy to measure accurately in many applications. This paper discusses a new semi-analytical solution and the related reconstruction algorithm. The new method can be used for an arbitrary sensor arrangement. To reduce the measurement uncertainty in practical applications, deep neural network (DNN)-based models are developed to denoise the reconstructed trajectory. Compared to traditional approaches such as wavelet-based filtering, the DNN-based denoisers are more accurate in the position reconstruction. However, they often over-smooth the velocity signal, and a hybrid method that combines the wavelet and DNN model provides a more accurate velocity reconstruction. All the DNN-based and wavelet methods perform well in the orientation reconstruction.


Sign in / Sign up

Export Citation Format

Share Document