scholarly journals High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Young-Woo Lee ◽  
SeungNam Cha ◽  
Kyung-Won Park ◽  
Jung Inn Sohn ◽  
Jong Min Kim

Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.

RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19153-19161 ◽  
Author(s):  
Xueqiang Gao ◽  
Hongmei Yu ◽  
Jia Jia ◽  
Jinkai Hao ◽  
Feng Xie ◽  
...  

The anion exchange ionomer incorporated into the electrodes of an anion exchange membrane fuel cell (AEMFC) enhances anion transport in the catalyst layer of the electrode, and thus improves performance and durability of the AEMFC.


2012 ◽  
Vol 485 ◽  
pp. 84-87
Author(s):  
Jun Fang ◽  
Yong Bin Wu ◽  
Yan Mei Zhang

A series of hydroxyl conducting anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate and fluoro-polyacrylate were prepared by radical polymerization, quaternization and alkalization. The reaction conditions of polymerization were discussed and the potential applications of the resulting membranes in alkaline fuel cells were assessed. The results show that the membranes have adequate conductivity for fuel cell application.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1992-1992
Author(s):  
Mohamed El Hannach ◽  
Ka Hung Wong ◽  
Yadvinder Singh ◽  
Narinder Singh Khattra ◽  
Erik Kjeang

The hydrogen fuel cell is a promising technology that supports the development of sustainable energy systems and zero emission vehicles. One of the key technical challenges for the use of fuel cells in the transportation sector is the high durability requirements 1–3. One of the key components that control the overall life time of a hydrogen fuel cell is the ionomer membrane that conducts the protons and allows the separation between the anode and the cathode. During fuel cell operation, the membrane is subjected to two categories of degradation: mechanical and chemical. These degradations lead to reduction in the performance, crossover of reactants between anode and cathode and ultimately total failure of the fuel cell. The mechanical degradation occurs when the membrane swells and shrinks under the variation of the local hydration level. This leads to fatigue of the ionomer structure and ultimately irreversible damage. However, under pure mechanical degradation the damage takes a very long time to occur 4,5. Sadeghi et al. 5 observed failure of the membrane after 20,000 of accelerated mechanical stress testing. This translates into a longer lifetime in comparison to what is observed in field operation 6. The chemical degradation on the other hand is caused by the presence of harmful chemicals such as OH radicals that attack the side chains and the main chains of the ionomer 7,8. Such attacks weaken the structural integrity of the membrane and make it prone to severe mechanical damage. Hence understanding the effect of combining both categories of membrane degradation is the key to accurate prediction of the time to failure of the fuel cell. In this work we propose a novel model that represents accurately the structural properties of the membrane and couples the chemical and the mechanical degradations to estimate when the ultimate failure is initiated. The model is based on a network of agglomerated fibrils corresponding to the basic building block of the membrane structure 9–11. The mechanical and chemical properties are defined for each fibril and probability functions are used to evaluate the likelihood of a fibril to break under certain operating conditions. The description of the fundamentals behind the approach will be presented. Two set of simulations will be presented and discussed. The first one corresponding to standard testing scenarios that were used to validate the model. The second set of results will highlight the impact of coupling both degradation mechanisms on the estimation of the failure initiation time. The main strengths of the model and the future development will be discussed as well. T. Sinigaglia, F. Lewiski, M. E. Santos Martins, and J. C. Mairesse Siluk, Int. J. Hydrogen Energy, 42, 24597–24611 (2017). T. Jahnke et al., J. Power Sources, 304, 207–233 (2016). P. Ahmadi and E. Kjeang, Int. J. Energy Res., 714–727 (2016). X. Huang et al., J. Polym. Sci. Part B Polym. Phys., 44, 2346–2357 (2006). A. Sadeghi Alavijeh et al., J. Electrochem. Soc., 162, F1461–F1469 (2015). N. Macauley et al., J. Power Sources, 336, 240–250 (2016). K. H. Wong and E. Kjeang, J. Electrochem. Soc., 161, F823–F832 (2014). K. H. Wong and E. Kjeang, ChemSusChem, 8, 1072–1082 (2015). P.-É. A. Melchy and M. H. Eikerling, J. Phys. Condens. Matter, 27, 325103–6 (2015). J. A. Elliott et al., Soft Matter, 7, 6820 (2011). L. Rubatat, G. Gebel, and O. Diat, Macromolecules, 37, 7772–7783 (2004).


2008 ◽  
Vol 20 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Caofeng Pan ◽  
Hui Wu ◽  
Cheng Wang ◽  
Bo Wang ◽  
Lu Zhang ◽  
...  

2016 ◽  
Vol 2 (5) ◽  
pp. 858-863 ◽  
Author(s):  
Wulin Yang ◽  
Bruce E. Logan

Microbial fuel cell (MFC) cathodes must have high performance and be resistant to water leakage.


2005 ◽  
Vol 23 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Meng Ni

A fuel cell is an electrochemical energy conversion device for electricity generation using hydrogen fuel. The principal characteristic of a fuel cell is that it can convert chemical energy directly into electrical energy with higher efficiencies than conventional mechanical systems. The emission of fuel cells using hydrogen as a fuel is only water vapour. Fuel cells are currently under development for both stationary and mobile applications in response to the need for sustainable energy technology. This paper reviews current status of fuel cell technologies, compares different types of fuel cells. The potential applications of fuel cells are discussed.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6709
Author(s):  
Zhihao Shang ◽  
Ryszard Wycisk ◽  
Peter Pintauro

A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.


Author(s):  
Saeed Moghaddam ◽  
Eakkachai Pengwang ◽  
Kevin Lin ◽  
Rich Masel ◽  
Mark Shannon

The increasing demand for high energy density power sources driven by advancements in portable electronics and MEMS devices has generated significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generation and delivery of fuel to the membrane electrode assembly (MEA). In this paper, we report the development of a millimeter-scale (3×3×1 mm3) micro fuel cell with on-board fuel and control system. Hydrogen is generated in the device through reaction between water and a metal hydride. The device incorporates a new control mechanism for hydrogen generation that occupies only 50 nL volume (less than 0.5% of the total device volume). More importantly, the control mechanism is self-regulating and does not consume any power, enabling the micro fuel cell to operate passively, similar to a battery.


Author(s):  
Yuan Zhou ◽  
Xun Zhu ◽  
Yang Yang ◽  
Dingding Ye ◽  
Rong Chen ◽  
...  

Schematic illustration of parametric mapping in membrane-less microfluidic fuel cell (M-MFC) for performance improvement.


1995 ◽  
Vol 6 (3) ◽  
pp. 197-210
Author(s):  
Martin R. Fry

This Paper describes the principles of the fuel cell as a power (and usually heat) generation device, including a discussion of the supporting system, or Balance of Plant - an essential necessity for commercial applications. It goes on to describe the variety of fuel cell types, their status and potential applications. Reference is then made to the major international participants in fuel cell R&D and the rapidly growing UK programme, supported both by the DTI and EPSRC. Finally, an attempt is made to project timescales for the emergence of commercial products, with due recognition for the barriers to development and the rapid progress towards reduced environmental impact being made by conventional alternative power sources.


Sign in / Sign up

Export Citation Format

Share Document