scholarly journals The Structural and Magnetic Properties of Gadolinium Doped CoFe2O4Nanoferrites

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qing Lin ◽  
Jinpei Lin ◽  
Yun He ◽  
Ruijun Wang ◽  
Jianghui Dong

Gadolinium substituted cobalt ferrite CoGdxFe2−xO4(x= 0, 0.04, 0.08) powders have been prepared by a sol-gel autocombustion method. XRD results indicate the production of a single cubic phase of ferrites. The lattice parameter increases and the average crystallite size decreases with the substitution of Gd3+ions. SEM shows that the ferrite powers are nanoparticles. Room temperature Mössbauer spectra of CoGdxFe22−xO4are two normal Zeeman-split sextets, which display ferrimagnetic behavior. The saturation magnetization decreases and the coercivity increases by the Gd3+ions.

2021 ◽  
Author(s):  
Adel Maher Wahba ◽  
Bahaa Eldeen M. Moharam ◽  
Aya Fayez Mahmoud

Abstract In this work, the impact of nonstoichiometric substitution of Fe3+ cations by Ni2+ ones on the structural and magnetic properties of Co0.5Ni0.5+xFe2-xO4 (0.0 ≤ x ≤ 0.4) nanoferrites synthesized by citric autocombustion method. The cubic phase purity for sintered samples were verified by XRD patterns and FTIR spectra. The crystallite size and microstrain were deduced using Williamson-Hall method. The estimated crystallite size ranges from 55 to 89 nm in agreement with TEM microimages. Hysteresis loops traced using VSM prevailed a regular reduction of saturation magnetization with Ni substitution. Relied on the experimental data of XRD, FTIR, and VSM, cation distribution has been suggested, according to which the nonstoichiometric substitution was compensated by the appearance of higher valance states of Fe, Ni, and Co cations. The suggested cation distribution successfully explained the recorded data of lattice parameter, crystallite size, IR frequencies, magnetization and coercivity.


2019 ◽  
Vol 43 (26) ◽  
pp. 10259-10269 ◽  
Author(s):  
Mohammed Hennous ◽  
E. Venkata Ramana ◽  
David M. Tobaldi ◽  
Benilde F. O. Costa ◽  
M. A. Valente ◽  
...  

A non-aqueous sol–gel route followed by oriented attachment to make multi-pod CoFe2O4 nanocrystals showing large room temperature saturation magnetization.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2095 ◽  
Author(s):  
Jinpei Lin ◽  
Jiaqi Zhang ◽  
Hao Sun ◽  
Qing Lin ◽  
Zeping Guo ◽  
...  

Cobalt-chromium ferrite, CoCrxFe2−xO4 (x = 0–1.2), has been synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD) indicates that samples calcined at 800 °C for 3 h were a single-cubic phase. The lattice parameter decreased with increasing Cr concentration. Scanning electron microscopy (SEM) confirmed that the sample powders were nanoparticles. It was confirmed from the room temperature Mössbauer spectra that transition from the ferrimagnetic state to the superparamagnetic state occurred with the doping of chromium. Both the saturation magnetization and the coercivity decreased with the chromium doping. With a higher annealing temperature, the saturation magnetization increased and the coercivity increased initially and then decreased for CoCr0.2Fe1.8O4.


2019 ◽  
Vol 34 (01) ◽  
pp. 2050002
Author(s):  
Wei Zhang ◽  
Aimin Sun ◽  
Xiqian Zhao ◽  
Xiaoguang Pan ◽  
Yingqiang Han

Manganese substituted nickel–copper–cobalt ferrite nanoparticles having the basic composition [Formula: see text] (x = 0.0, 0.1, 0.2, 0.3 and 0.4) were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) was used to estimate phase purity and lattice symmetry. All the prepared samples show the single-phase cubic spinel structure. Fourier transform infrared (FTIR) measurements also confirm the cubic spinel structure of the ferrite that is formed. The preparation of samples show these nearly spherical particles by Transmission electron microscopy (TEM). The magnetic properties of Mn[Formula: see text] ion substituted in nickel–copper–cobalt ferrite were studied by Vibrating sample magnetometer (VSM). The saturation magnetization ([Formula: see text]), remanent magnetization [Formula: see text], coercivity [Formula: see text], magnetic moment [Formula: see text] and anisotropy constant [Formula: see text] first increase and then decrease with the increase of [Formula: see text] ions content. They had better magnetism than pure sample and other substituted samples when the substitution amount of [Formula: see text] ions was [Formula: see text]. At [Formula: see text], the maximum values of remanent magnetization [Formula: see text], saturation magnetization [Formula: see text] and coercivity [Formula: see text] are 25.58 emu/g, 61.95 emu/g and 689.76 Oe, respectively. This indicates that the magnetism of ferrite can improve by substituting with the appropriate amount of manganese. However, due to the excess [Formula: see text] ions instead, ferrite magnetism is weakened. This means that these materials can be used in magnetic data storage and recording media.


2009 ◽  
Vol 152-153 ◽  
pp. 135-138 ◽  
Author(s):  
S.V. Trukhanov ◽  
A.V. Trukhanov ◽  
Christian E. Botez ◽  
H. Szymczak

Nanocrystalline La0.50Ba0.50MnO3 manganite was synthesized by an optimized sol-gel method. The initial sample was subjected to step-by-step heat treatment under air atmosphere. The ion stoichiometry, the morphology of crystallites of ceramics, and the magnetic properties were studied. It is established that the average crystallite size increases with increasing annealing temperature. All of the samples studied are characterized by a perovskite-like cubic structure, with the unit cell parameter a increasing continuously with the average crystallite size. The most significant lattice compression occurs in the sample with an average crystallite size of ~ 30 nm. The increase in the average crystallite size causes a nonmonotonic increase in the Curie temperature and in the spontaneous magnetic moment. The anomalous behavior of the magnetic properties of the La0.50Ba0.50MnO3 manganites obtained is explained by the competition between two size effects, namely, the frustration of the indirect exchange interactions Mn3+ – O – Mn4+ on the nanocrystallite surface and the crystal lattice compression due to the crystallite surface tension.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Nguyen Hoang Nam ◽  
Nguyen Thi Thanh Van ◽  
Nguyen Dang Phu ◽  
Tran Thi Hong ◽  
Nguyen Hoang Hai ◽  
...  

Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. This paper reports some structural and magnetic properties of FePt nanoparticles prepared by this method. The as-prepared Fe45Pt55nanoparticles were ferromagnetic at room temperature. Upon annealing at 700°C for 1 h under H2atmosphere, the saturation magnetization and the coercivity of the nanoparticles were improved significantly. The annealed nanoparticles showed a high coercivity of 13.5 kOe at 2 K and of 9 kOe at room temperature. Sonoelectrodeposition is a promising technique to make large quantity of FePt nanoparticles.


2014 ◽  
Vol 28 ◽  
pp. 141-150 ◽  
Author(s):  
Mohd Syafiq Zulfakar ◽  
Huda Abdullah ◽  
Mohammad Tariqul Islam ◽  
Wan Nasarudin Wan Jalal ◽  
Zalita Zainuddin ◽  
...  

Polycrystalline of (1-x)ZnAl2O4 – xSiO2 compound with compositions of x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared using sol-gel method. Structural properties was investigated by atomic force microscopy (AFM) and x-ray diffractometer (XRD). The AFM images analysis showed that the surface roughness of the highest composition had rougher surface compared with other samples. XRD measurement indicated that the crystallite size also increased with average crystallite size around 18 nm with cubic phase had been found. The dielectric permittivity value were measured with frequency range of 1 Hz to 1 MHz. It is showed that the dielectric value decreased as the freqeuncy was applied to the samples. The performance of the patch antenna showed that the antenna resonated at 3.30 GHz and give-13.87 dB with frequency range about 2 – 4 GHz.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7820
Author(s):  
Mahmoud M. Hessien ◽  
Ali Omar Turky ◽  
Abdullah K. Alanazi ◽  
Mohammed Alsawat ◽  
Mohamed H. H. Mahmoud ◽  
...  

Spinel cobalt ferrite/hexagonal strontium hexaferrite (2CoFe2O4/SrFe12−2xSmxLaxO19; x = 0.2, 0.5, 1.0, 1.5) nanocomposites were fabricated using the tartaric acid precursor pathway, and the effects of La3+–Sm3+ double substitution on the formation, structure, and magnetic properties of CoFe2O4/SrFe12−2xSmxLaxO19 nanocomposite at different annealing temperatures were assayed through X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. A pure 2CoFe2O4/SrFe12O19 nanocomposite was obtained from the tartrate precursor complex annealed at 1100 °C for 2 h. The substitution of Fe3+ ion by Sm3–+La3+ions promoted the formation of pure 2CoFe2O4/SrFe12O19 nanocomposite at 1100 °C. The positions and intensities of the strongest peaks of hexagonal ferrite changed after Sm3+–La3+ substitution at ≤1100 °C. In addition, samples with an Sm3+–La3+ ratio of ≥1.0 annealed at 1200 °C for 2 h showed diffraction peaks for lanthanum cobalt oxide (La3Co3O8; dominant phase) and samarium ferrite (SmFeO3). The crystallite size range at all constituent phases was in the nanocrystalline range, from 39.4 nm to 122.4 nm. The average crystallite size of SrFe12O19 phase increased with the number of Sm3+–La3+ substitutions, whereas that of CoFe2O4 phase decreased with an x of up to 0.5. La–Sm co-doped ion substitution increased the saturation magnetization (Ms) value and the subrogated ratio to 0.2, and the Ms value decreased with the increasing number of double substitutions. A high saturation magnetization value (Ms = 69.6 emu/g) was obtained using a La3+–Sm3+ co-doped ratio of 0.2 at 1200 for 2 h, and a high coercive force value (Hc = 1192.0 Oe) was acquired using the same ratio at 1000 °C.


Sign in / Sign up

Export Citation Format

Share Document