scholarly journals Sphingolipids in High Fat Diet and Obesity-Related Diseases

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Songhwa Choi ◽  
Ashley J. Snider

Nutrient oversupply associated with a high fat diet (HFD) significantly alters cellular metabolism, and specifically including sphingolipid metabolism. Sphingolipids are emerging as bioactive lipids that play key roles in regulating functions, in addition to their traditional roles as membrane structure. HFD enhancesde novosphingolipid synthesis and turnover of sphingolipids via the salvage pathway, resulting in the generation of ceramide, and more specifically long chain ceramide species. Additionally, HFD elevates sphingomyelin and sphingosine-1 phosphate (S1P) levels in several tissues including liver, skeletal muscle, adipose tissue, and cardiovascular tissues. HFD-stimulated sphingolipid generation contributes to systemic insulin resistance, dysregulated lipid accumulation, and cytokine expression and secretion from skeletal muscle and adipose tissues, exacerbating obesity-related conditions. Furthermore, altered sphingolipid levels, particularly ceramide and sphingomyelin, are involved in obesity-induced endothelial dysfunction and atherosclerosis. In this review, HFD-mediated sphingolipid metabolism and its impact on HFD-induced biology and pathobiology will be discussed.

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2019 ◽  
Author(s):  
Erin J. Stephenson ◽  
JeAnna R. Redd ◽  
Detrick Snyder ◽  
Quynh T. Tran ◽  
Binbin Lu ◽  
...  

AbstractThe mechanistic target of rapamycin (mTORC1) is a nutrient responsive protein kinase complex that helps co-ordinate anabolic processes across all tissues. There is evidence that signaling through mTORC1 in skeletal muscle may be a determinant of energy expenditure and aging and therefore components downstream of mTORC1 signaling may be potential targets for treating obesity and age-associated metabolic disease. Here, we generated mice with Ckmm-Cre driven ablation of Tsc1, which confers constitutive activation of mTORC1 in skeletal muscle and performed unbiased transcriptional analyses to identify pathways and candidate genes that may explain how skeletal muscle mTORC1 activity regulates energy balance and aging. Activation of skeletal muscle mTORC1 produced a striking resistance to diet-and age-induced obesity without inducing systemic insulin resistance. We found that increases in energy expenditure following a high fat diet were mTORC1-dependent and that elevated energy expenditure caused by ablation of Tsc1 coincided with the upregulation of skeletal muscle-specific thermogenic mechanisms that involve sarcolipin-driven futile cycling of Ca2+ through SERCA2. Additionally, we report that constitutive activation of mTORC1 in skeletal muscle reduces lifespan. These findings support the hypothesis that activation of mTORC1 and its downstream targets, specifically in skeletal muscle, may play a role in nutrient-dependent thermogenesis and aging.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Patrycja Bielawiec ◽  
Ewa Harasim-Symbor ◽  
Karolina Konstantynowicz-Nowicka ◽  
Klaudia Sztolsztener ◽  
Adrian Chabowski

Numerous studies showed that sustained obesity results in accumulation of bioactive lipid derivatives in several tissues, including skeletal muscle, which further contributes to the development of metabolic disturbances and insulin resistance (IR). The latest data indicate that a potential factor regulating lipid and glucose metabolism is a phytocannabinoid—cannabidiol (CBD), a component of medical marijuana (Cannabis). Therefore, we aimed to investigate whether chronic CBD administration influences bioactive lipid content (e.g., ceramide (CER)), as well as glucose metabolism, in the red skeletal muscle (musculus gastrocnemius) with predominant oxidative metabolism. All experiments were conducted on an animal model of obesity, i.e., Wistar rats fed a high-fat diet (HFD) or standard rodent chow, and subsequently injected with CBD in a dose of 10 mg/kg or its solvent for two weeks. The sphingolipid content was assessed using high-performance liquid chromatography (HPLC), while, in order to determine insulin and glucose concentrations, immunoenzymatic and colorimetric methods were used. The protein expression from sphingolipid and insulin signaling pathways, as well as endocannabinoidome components, was evaluated by immunoblotting. Unexpectedly, our experimental model revealed that the significantly intensified intramuscular de novo CER synthesis pathway in the HFD group was attenuated by chronic CBD treatment. Additionally, due to CBD administration, the content of other sphingolipid derivatives, i.e., sphingosine-1-phosphate (S1P) was restored in the high-fat feeding state, which coincided with an improvement in skeletal muscle insulin signal transduction and glycogen recovery.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Krzysztof Kurek ◽  
Agnieszka Mikłosz ◽  
Bartłomiej Łukaszuk ◽  
Adrian Chabowski ◽  
Jan Górski ◽  
...  

Nowadays wrong nutritional habits and lack of physical activity give a rich soil for the development of insulin resistance and obesity. Many researches indicate lipids, especially the one from the sphingolipids class, as the group of molecules heavily implicated in the progress of insulin resistance in skeletal muscle. Recently, scientists have focused their scrutiny on myriocin, a potent chemical compound that inhibits ceramide (i.e., central hub of sphingolipids signaling pathway)de novosynthesis. In the present research we evaluated the effects of myriocin application on type 2 diabetes mellitus in three different types of skeletal muscles: (1) slow-oxidative (red gastrocnemius), (2) oxidative-glycolytic (soleus), and (3) glycolytic (white gastrocnemius). For these reasons the animals were randomly divided into four groups: “control” (C), “myriocin” (M), “high fat diet” (HFD), “high fat diet” (HFD), and “high fat diet + myriocin” (HFD + M). Ourin vivostudy demonstrated that ceramide synthesis inhibition reduces intramuscular ceramide, its precursor sphinganine, and its derivatives sphingosine and sphingosine-1-phosphate concentrations. Moreover, FFA and TG contents were also decreased after myriocin treatment. Thus, myriocin presents potential therapeutic perspectives with respect to the treatment of insulin resistance and its serious consequences in obese patients.


2020 ◽  
Vol 318 (2) ◽  
pp. E131-E144 ◽  
Author(s):  
Zhongyang Lu ◽  
Yanchun Li ◽  
Wing-Kin Syn ◽  
Zhewu Wang ◽  
Maria F. Lopes-Virella ◽  
...  

We reported previously that increased acid sphingomyelinase (ASMase)-catalyzed hydrolysis of sphingomyelin, which leads to increases in ceramide and sphingosine 1 phosphate (S1P), played a key role in the synergistic upregulation of proinflammatory cytokines by palmitic acid (PA), a major saturated fatty acid, and lipopolysaccharide (LPS) in macrophages. Since macrophages are vital players in nonalcoholic steatohepatitis (NASH) and atherosclerosis, we assessed the effect of ASMase inhibition on NASH and atherosclerosis cooperatively induced by high-PA-containing high-fat diet (HP-HFD) and LPS in LDL receptor-deficient (LDLR−/−) mice. LDLR−/− mice were fed HP-HFD, injected with low dose of LPS and treated with or without the ASMase inhibitor amitriptyline. The neutral sphingomyelinase inhibitor GW4869 was used as control. Metabolic study showed that both amitriptyline and GW4869 reduced glucose, lipids, and insulin resistance. Histological analysis and Oil Red O staining showed that amitriptyline robustly reduced hepatic steatosis while GW4869 had modest effects. Interestingly, immunohistochemical study showed that amitriptyline, but not GW4869, strongly reduced hepatic inflammation. Furthermore, results showed that both amitriptyline and GW4869 attenuated atherosclerosis. To elucidate the underlying mechanisms whereby amitriptyline inhibited both NASH and atherosclerosis, but GW4869 only inhibited atherosclerosis, we found that amitriptyline, but not GW4869, downregulated proinflammatory cytokines in macrophages. Finally, we found that inhibition of sphingosine 1 phosphate production is a potential mechanism whereby amitriptyline inhibited proinflammatory cytokines. Collectively, this study showed that amitriptyline inhibited NASH and atherosclerosis through modulation of sphingolipid metabolism in LDLR−/− mice, indicating that sphingolipid metabolism in macrophages plays a crucial role in the linkage of NASH and atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


Sign in / Sign up

Export Citation Format

Share Document