scholarly journals Traffic Management as a Service: The Traffic Flow Pattern Classification Problem

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Carlos T. Calafate ◽  
David Soler ◽  
Juan-Carlos Cano ◽  
Pietro Manzoni

Intelligent Transportation System (ITS) technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.

Transport ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Marius Jakimavičius ◽  
Marija Burinskienė

As a subsystem of an Intelligent Transportation System (ITS), an Advanced Traveller Information System (ATIS) disseminates real‐time traffic information to travellers. To help them with making better decisions on choosing their routes, a strong need to predict traffic congestion and to disseminate the predicted congestion information relating to travellers can be seen. This paper describes a methodology used by drivers for calculating an optimal driven route in Vilnius. The paper discusses how ATIS systems will likely evolve the experience of Information Service Providers (ISP) and optimal route planning calculations. A few methods of route planning have been taken into account. The paper presents the following types of route calculation: 1) the shortest route; 2) the quickest route; 3) the quickest forecasted route according to historical traffic information. Also, the paper deals with the architecture of the WEB based information system for drivers in Vilnius and analyzes data on traffic workflow. Furthermore, a comprehensive route planning procedure that forecasts data on driving time considering historical traffic is followed.


Author(s):  
Joseph L. Schofer ◽  
Frank S. Koppelman ◽  
William A. Charlton

Insights about the design of route guidance systems based on the needs and desires of drivers who are familiar with the travel network are provided. Results from the ADVANCE Intelligent Transportation System operational test, in which more than 100 drivers used vehicles equipped with dynamic route guidance systems for 2-week periods, suggest that such drivers value real-time traffic information, and they want to incorporate their own knowledge and perspectives into the development of route plans, which they expect to be superior to those prepared by the navigation computer. This suggests that future route guidance systems likely to be targeted at familiar drivers should be based on a sharing of tasks between computer and driver that takes greater advantage of driver knowledge than that considered in current designs. Specifically, the driver should be able to take more responsibility for route planning, with the computer responsible mainly for traffic congestion data acquisition, organization and storage, and evaluation of driver-defined routes.


2021 ◽  
Vol 13 (15) ◽  
pp. 8324
Author(s):  
Viacheslav Morozov ◽  
Sergei Iarkov

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.


Author(s):  
Wee Siong Ng ◽  
Justin Cheng ◽  
XianJun Wang ◽  
Sivakumar Viswanathan

One of the major objectives of Advanced Traffic Management Systems (ATMS) is to reduce traffic congestion in urban environments by improving the efficiency of utilization of existing transport infrastructures. Many creative and efficient technologies have been developed over the years. Although commuters, especially drivers, take a critical part in containing traffic congestion problems, they are playing a passive role in the traffic-management ecosystem. Considerably, this is due to the information asymmetry between ATMS decision makers and commuters; what is missing is a matching mechanism to create a bridge between information providers and information consumers in the mobile environment. The authors’ solution provides an efficient services-centric framework for delivering pertinent information to commuters. Probe vehicles are used to estimate the real-time traffic flow and disseminate this information effectively to users’ mobile devices. A 2-level indexing scheme is designed to effectively index the grid cells which contain the spatial information and a location-aware mobile application and back-end services are also implemented. Processed information is disseminated to users’ mobile devices through wireless means and presented in a user friendly interface. Experimental results show that this system is scalable and responsive.


2020 ◽  
Vol 34 (10) ◽  
pp. 13855-13856 ◽  
Author(s):  
Lile Li ◽  
Wei Liu

Real-time traffic monitoring is one of the most important factors for route planning and estimated time of arrival (ETA). Many major roads in large cities are installed with live traffic monitoring systems, inferring the current traffic congestion status and ETAs to other locations. However, there are also many other roads, especially small roads and paths, that are not monitored. Yet, live traffic status on such un-monitored small roads can play a non-negligible role in personalized route planning and re-routing when road incident happens. How to estimate the traffic status on such un-monitored roads is thus a valuable problem to be addressed. In this paper, we propose a model called Spatial Factorization Machines (SFM) to address this problem. A major advantage of the SFM model is that it incorporates physical distances and structures of road networks into the estimation of traffic status on un-monitored roads. Our experiments on real world traffic data demonstrate that the SFM model significantly outperforms other existing models on ETA of un-monitored roads.


2013 ◽  
Vol 409-410 ◽  
pp. 1209-1212
Author(s):  
Da Shan Chen

The macroscopic traffic flow parameters characteristic is an important research content in traffic flow theory. Urban expressway plays an important role in the urban road network. It is gradually shifting from large-scale infrastructure-oriented to refinement of traffic management. With the growing of traffic demand and much more traffic congestion and accidents, integrated active traffic management should be involved in urban expressway management on the back ground of car-road coordination. As the backbone road network, traffic flow characteristic parameters have great value for the control and management of urban expressway. Then the characteristic variables of the expressway traffic flow were identified which support meticulous management for urban expressway.


2014 ◽  
Vol 988 ◽  
pp. 715-718
Author(s):  
Jia Yang Li ◽  
Qin Xue ◽  
Jin De Liu

Short-term traffic flow forecasting is a core problem in Intelligent Transportation System .Considering linear and nonlinear, this paper proposes a short-term traffic flow intelligent combination approach. The weight of four forecasting model is given by the correlation coefficient and standard deviation method. The experimental results show that the new approach of real-time traffic flow prediction is higher precision than single method.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sheng Jin ◽  
Dianhai Wang ◽  
Dongfang Ma

The expressways in Beijing are confronted with more serious traffic congestions. Based on the survey data obtained from the typical sections at the expressways, the time dependent characteristics of traffic flow parameters were analyzed in detail and the data gap was found in this paper. The Fast Fourier Transform (FFT) method is proposed to transfer the data of traffic flow parameters for describing the fluctuation characteristics of traffic flow. Two methods of identification, the graph method and the control line method, were proposed as to the change time of traffic bottleneck forming and dissipating. The findings in this paper have already been applied in traffic management and ramp control at the expressways in Beijing.


Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Noor Afiza Mat Razali ◽  
Nuraini Shamsaimon ◽  
Khairul Khalil Ishak ◽  
Suzaimah Ramli ◽  
Mohd Fahmi Mohamad Amran ◽  
...  

AbstractThe development of the Internet of Things (IoT) has produced new innovative solutions, such as smart cities, which enable humans to have a more efficient, convenient and smarter way of life. The Intelligent Transportation System (ITS) is part of several smart city applications where it enhances the processes of transportation and commutation. ITS aims to solve traffic problems, mainly traffic congestion. In recent years, new models and frameworks for predicting traffic flow have been rapidly developed to enhance the performance of traffic flow prediction, alongside the implementation of Artificial Intelligence (AI) methods such as machine learning (ML). To better understand how ML implementations can enhance traffic flow prediction, it is important to inclusively know the current research that has been conducted. The objective of this paper is to present a comprehensive and systematic review of the literature involving 39 articles published from 2016 onwards and extracted from four main databases: Scopus, ScienceDirect, SpringerLink and Taylor & Francis. The extracted information includes the gaps, approaches, evaluation methods, variables, datasets and results of each reviewed study based on the methodology and algorithms used for the purpose of predicting traffic flow. Based on our findings, the common and frequent machine learning techniques that have been applied for traffic flow prediction are Convolutional Neural Network and Long-Short Term Memory. The performance of their proposed techniques was compared with existing baseline models to determine their effectiveness. This paper is limited to certain literature pertaining to common databases. Through this limitation, the discussion is more focused on (and limited to) the techniques found on the list of reviewed articles. The aim of this paper is to provide a comprehensive understanding of the application of ML and DL techniques for improving traffic flow prediction, contributing to the betterment of ITS in smart cities. For future endeavours, experimental studies that apply the most used techniques in the articles reviewed in this study (such as CNN, LSTM or a combination of both techniques) can be accomplished to enhance traffic flow prediction. The results can be compared with baseline studies to determine the accuracy of these techniques.


Sign in / Sign up

Export Citation Format

Share Document