scholarly journals Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation

2021 ◽  
Vol 13 (15) ◽  
pp. 8324
Author(s):  
Viacheslav Morozov ◽  
Sergei Iarkov

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fareed Sheriff

PurposeThis paper presents the Edge Load Management and Optimization through Pseudoflow Prediction (ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms; through machine learning with nested long short-term memory (NLSTM) modules and graph theory, the algorithm attempts to predict the near future using past data and traffic patterns to inform its real-time decisions and better mitigate traffic by predicting future traffic flow based on past flow and using those predictions to both maximize present traffic flow and decrease future traffic congestion.Design/methodology/approachELMOPP was tested against the ITLC and OAF traffic management algorithms using a simulation modeled after the one presented in the ITLC paper, a single-intersection simulation.FindingsThe collected data supports the conclusion that ELMOPP statistically significantly outperforms both algorithms in throughput rate, a measure of how many vehicles are able to exit inroads every second.Originality/valueFurthermore, while ITLC and OAF require the use of GPS transponders and GPS, speed sensors and radio, respectively, ELMOPP only uses traffic light camera footage, something that is almost always readily available in contrast to GPS and speed sensors.


2020 ◽  
Vol 8 (6) ◽  
pp. 3228-3231

Intelligent Transport System (ITS) is blooming worldwide. The Traditional Traffic management system is a tedious process and it requires huge man power, to overcome this we have proposed an automatic Traffic monitoring system that has effective fleet management. The current transportation system at intersections and junctions has Traffic Lights with Fixed durations which increase the unnecessary staying time which intern harms the environment. An Adaptive traffic light control is implemented using SUMO simulator, that changes the duration of Green and Red light according to the traffic flow. This is an effective and efficient way to reduce the Traffic congestion. The traffic congestion is determined by taking the object count using deep learning approach (Convolutional Neural Network).


Author(s):  
Mohammed Mouhcine Maaroufi ◽  
Laila Stour ◽  
Ali Agoumi

Managing mobility, both of people and goods, in cities is a thorny issue. The travel needs of urban populations are increasing and put pressure on transport infrastructure. The Moroccan cities are no exception and will struggle, in the short term, to respond to the challenges of the acceleration of the phenomenon of urbanization and the increase in demand for mobility. This will inevitably prevent them from turning into smart cities. The term smart certainly alludes to better use of technologies, but smart mobility is also defined as “a set of coordinated actions intended to improve the efficiency, effectiveness and environmental sustainability of cities” [1]. The term mobility highlights the preponderance of humans over infrastructure and vehicles. Faced with traffic congestion, the solutions currently adopted which consist of fitting out and widening the infrastructures, only encourage more trips and report the problem with more critical consequences. It is true that beyond a certain density of traffic, even Intelligent Transport Systems (ITS) are not useful. The concept of dynamic lane management or Advanced Traffic Management (ATM) opens up new perspectives. Its objective is to manage and optimize road traffic in a variable manner, in space and in time. This article is a summary of the development of a road infrastructure dedicated to Heavy Goods Vehicles (HGV), the first of its kind in Morocco. It aims to avoid the discomfort caused by trucks in the urban road network of the city of Casablanca. This research work is an opportunity to reflect on the introduction of ITS and ATM to ensure optimal use of existing infrastructure before embarking on heavy and irreversible infrastructure projects.


Author(s):  
Norlezah Hashim ◽  
Fakrulradzi Idris ◽  
Ahmad Fauzan Kadmin ◽  
Siti Suhaila Jaapar Sidek

Traffic lights play such important role in traffic management to control the traffic on the road. Situation at traffic light area is getting worse especially in the event of emergency cases. During traffic congestion, it is difficult for emergency vehicle to cross the road which involves many junctions. This situation leads to unsafe conditions which may cause accident. An Automatic Traffic Light Controller for Emergency Vehicle is designed and developed to help emergency vehicle crossing the road at traffic light junction during emergency situation. This project used Peripheral Interface Controller (PIC) to program a priority-based traffic light controller for emergency vehicle. During emergency cases, emergency vehicle like ambulance can trigger the traffic light signal to change from red to green in order to make clearance for its path automatically. Using Radio Frequency (RF) the traffic light operation will turn back to normal when the ambulance finishes crossing the road. Result showed the design is capable to response within the range of 55 meters. This project was successfully designed, implemented and tested.


2013 ◽  
Vol 409-410 ◽  
pp. 1209-1212
Author(s):  
Da Shan Chen

The macroscopic traffic flow parameters characteristic is an important research content in traffic flow theory. Urban expressway plays an important role in the urban road network. It is gradually shifting from large-scale infrastructure-oriented to refinement of traffic management. With the growing of traffic demand and much more traffic congestion and accidents, integrated active traffic management should be involved in urban expressway management on the back ground of car-road coordination. As the backbone road network, traffic flow characteristic parameters have great value for the control and management of urban expressway. Then the characteristic variables of the expressway traffic flow were identified which support meticulous management for urban expressway.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Duc-Binh Nguyen ◽  
Chyi-Ren Dow ◽  
Shiow-Fen Hwang

Existing intelligent transport systems (ITS) do not fully consider and resolve accuracy, instantaneity, and compatibility challenges while resolving traffic congestion in Internet of Vehicles (IoV) environments. This paper proposes a traffic congestion monitoring system, which includes data collection, segmented structure establishment, traffic-flow modelling, local segment traffic congestion prediction, and origin-destination traffic congestion service for drivers. Macroscopic model-based traffic-flow factors were formalized on the basis of the analysis results. Fuzzy rules-based local segment traffic congestion prediction was performed to determine the traffic congestion state. To enhance prediction efficiency, this paper presents a verification process for minimizing false predictions which is based on the Rankine-Hugoniot condition and an origin-destination traffic congestion service is also provided. To verify the feasibility of the proposed system, a prototype was implemented. The experimental results demonstrate that the proposed scheme can effectively monitor traffic congestion in terms of accuracy and system response time.


Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


2020 ◽  
Vol 1 (2) ◽  
pp. 65-70
Author(s):  
Daniel Shunu

In this study, a proposed intelligent traffic management system is presented making use of the wireless sensor network for improving traffic flow.  By making use of the clustering algorithm, VANET environment is utilized for the proposed system. The components of the proposed system include sensor node hardware, vehicle detection system through magnetometer, and UDP protocol for communication between the nodes. The intersection control agent receives the information about the vehicles and by making use of its algorithm, it dynamically changes the traffic light timings. By making use of the greedy algorithm, the system can be enhanced to a wider area by connecting multiple intersections.


Author(s):  
A. N. Klimovich ◽  
V. N. Shuts

Adaptive algorithms, which current traffic systems are based on, exist for many decades. Information technologies have developed significantly over this period and it makes more relevant their application in the field of transport. This paper analyses modern trends in the development of adaptive traffic flow control methods. Reviewed the most perspective directions in the field of intelligent transport systems, such as high-speed wireless communication between vehicles and road infrastructure based on such technologies as DSRC and WAVE, traffic jams prediction having such features as traffic flow information, congestion, velocity of vehicles using machine learning, fuzzy logic rules and genetic algorithms, application of driver assistance systems to increase vehicle’s autonomy. Advantages of such technologies in safety, efficiency and usability of transport are shown. Described multi-agent approach, which uses V2I-communication between vehicles and intersection controller to improve efficiency of control due to more complete traffic flow information and possibility to give orders to separate vehicles. Presented number of algorithms which use such approach to create new generation of adaptive transport systems.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Noor Afiza Mat Razali ◽  
Nuraini Shamsaimon ◽  
Khairul Khalil Ishak ◽  
Suzaimah Ramli ◽  
Mohd Fahmi Mohamad Amran ◽  
...  

AbstractThe development of the Internet of Things (IoT) has produced new innovative solutions, such as smart cities, which enable humans to have a more efficient, convenient and smarter way of life. The Intelligent Transportation System (ITS) is part of several smart city applications where it enhances the processes of transportation and commutation. ITS aims to solve traffic problems, mainly traffic congestion. In recent years, new models and frameworks for predicting traffic flow have been rapidly developed to enhance the performance of traffic flow prediction, alongside the implementation of Artificial Intelligence (AI) methods such as machine learning (ML). To better understand how ML implementations can enhance traffic flow prediction, it is important to inclusively know the current research that has been conducted. The objective of this paper is to present a comprehensive and systematic review of the literature involving 39 articles published from 2016 onwards and extracted from four main databases: Scopus, ScienceDirect, SpringerLink and Taylor & Francis. The extracted information includes the gaps, approaches, evaluation methods, variables, datasets and results of each reviewed study based on the methodology and algorithms used for the purpose of predicting traffic flow. Based on our findings, the common and frequent machine learning techniques that have been applied for traffic flow prediction are Convolutional Neural Network and Long-Short Term Memory. The performance of their proposed techniques was compared with existing baseline models to determine their effectiveness. This paper is limited to certain literature pertaining to common databases. Through this limitation, the discussion is more focused on (and limited to) the techniques found on the list of reviewed articles. The aim of this paper is to provide a comprehensive understanding of the application of ML and DL techniques for improving traffic flow prediction, contributing to the betterment of ITS in smart cities. For future endeavours, experimental studies that apply the most used techniques in the articles reviewed in this study (such as CNN, LSTM or a combination of both techniques) can be accomplished to enhance traffic flow prediction. The results can be compared with baseline studies to determine the accuracy of these techniques.


Sign in / Sign up

Export Citation Format

Share Document