scholarly journals Backtracking-Based Simultaneous Orthogonal Matching Pursuit for Sparse Unmixing of Hyperspectral Data

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Fanqiang Kong ◽  
Wenjun Guo ◽  
Yunsong Li ◽  
Qiu Shen ◽  
Xin Liu

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed signatures of a hyperspectral image can be expressed in the form of linear combination of only a few spectral signatures (endmembers) in an available spectral library. Simultaneous orthogonal matching pursuit (SOMP) algorithm is a typical simultaneous greedy algorithm for sparse unmixing, which involves finding the optimal subset of signatures for the observed data from a spectral library. But the numbers of endmembers selected by SOMP are still larger than the actual number, and the nonexisting endmembers will have a negative effect on the estimation of the abundances corresponding to the actual endmembers. This paper presents a variant of SOMP, termed backtracking-based SOMP (BSOMP), for sparse unmixing of hyperspectral data. As an extension of SOMP, BSOMP incorporates a backtracking technique to detect the previous chosen endmembers’ reliability and then deletes the unreliable endmembers. Through this modification, BSOMP can select the true endmembers more accurately than SOMP. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed algorithm.

2019 ◽  
Vol 11 (9) ◽  
pp. 1114
Author(s):  
Sixiu Hu ◽  
Jiangtao Peng ◽  
Yingxiong Fu ◽  
Luoqing Li

By means of joint sparse representation (JSR) and kernel representation, kernel joint sparse representation (KJSR) models can effectively model the intrinsic nonlinear relations of hyperspectral data and better exploit spatial neighborhood structure to improve the classification performance of hyperspectral images. However, due to the presence of noisy or inhomogeneous pixels around the central testing pixel in the spatial domain, the performance of KJSR is greatly affected. Motivated by the idea of self-paced learning (SPL), this paper proposes a self-paced KJSR (SPKJSR) model to adaptively learn weights and sparse coefficient vectors for different neighboring pixels in the kernel-based feature space. SPL strateges can learn a weight to indicate the difficulty of feature pixels within a spatial neighborhood. By assigning small weights for unimportant or complex pixels, the negative effect of inhomogeneous or noisy neighboring pixels can be suppressed. Hence, SPKJSR is usually much more robust. Experimental results on Indian Pines and Salinas hyperspectral data sets demonstrate that SPKJSR is much more effective than traditional JSR and KJSR models.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5559
Author(s):  
Na Li ◽  
Ruihao Wang ◽  
Huijie Zhao ◽  
Mingcong Wang ◽  
Kewang Deng ◽  
...  

To solve the small sample size (SSS) problem in the classification of hyperspectral image, a novel classification method based on diverse density and sparse representation (NCM_DDSR) is proposed. In the proposed method, the dictionary atoms, which learned from the diverse density model, are used to solve the noise interference problems of spectral features, and an improved matching pursuit model is presented to obtain the sparse coefficients. Airborne hyperspectral data collected by the push-broom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVIRIS) are applied to evaluate the performance of the proposed classification method. Results illuminate that the overall accuracies of the proposed model for classification of PHI and AVIRIS images are up to 91.59% and 92.83% respectively. In addition, the kappa coefficients are up to 0.897 and 0.91.


2020 ◽  
Vol 12 (12) ◽  
pp. 2016 ◽  
Author(s):  
Tao Zhang ◽  
Puzhao Zhang ◽  
Weilin Zhong ◽  
Zhen Yang ◽  
Fan Yang

The traditional local binary pattern (LBP, hereinafter we also call it a two-dimensional local binary pattern 2D-LBP) is unable to depict the spectral characteristics of a hyperspectral image (HSI). To cure this deficiency, this paper develops a joint spectral-spatial 2D-LBP feature (J2D-LBP) by averaging three different 2D-LBP features in a three-dimensional hyperspectral data cube. Subsequently, J2D-LBP is added into the Gabor filter-based deep network (GFDN), and then a novel classification method JL-GFDN is proposed. Different from the original GFDN framework, JL-GFDN further fuses the spectral and spatial features together for HSI classification. Three real data sets are adopted to evaluate the effectiveness of JL-GFDN, and the experimental results verify that (i) JL-GFDN has a better classification accuracy than the original GFDN; (ii) J2D-LBP is more effective in HSI classification in comparison with the traditional 2D-LBP.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fan Li

Sparse unmixing is an important technique for hyperspectral data analysis. Most sparse unmixing algorithms underutilize the spatial and spectral information of the hyperspectral image, which is unfavourable for the accuracy of endmember identification and abundance estimation. We propose a new spectral unmixing method based on the low-rank representation model and spatial-weighted collaborative sparsity, aiming to exploit structural information in both the spatial and spectral domains for unmixing. The spatial weights are incorporated into the collaborative sparse regularization term to enhance the spatial continuity of the image. Meanwhile, the global low-rank constraint is employed to maintain the spatial low-dimensional structure of the image. The model is solved by the well-known alternating direction method of multiplier, in which the abundance coefficients and the spatial weights are updated iteratively in the inner and outer loops, respectively. Experimental results obtained from simulation and real data reveal the superior performance of the proposed algorithm on spectral unmixing.


Author(s):  
A. Khandelwal ◽  
K. S. Rajan

In the recent past, remotely sensed data with high spectral resolution has been made available and has been explored for various agricultural and geological applications. While these spectral signatures of the objects of interest provide important clues, the relatively poor spatial resolution of these hyperspectral images limits their utility and performance. In this context, hyperspectral image enhancement using multispectral data has been actively pursued to improve spatial resolution of such imageries and thus enhancing its use for classification and composition analysis in various applications. But, this also poses a challenge in terms of managing the trade-off between improved spatial detail and the distortion of spectral signatures in these fused outcomes. This paper proposes a strategy of using vector decomposition, as a model to transfer the spatial detail from relatively higher resolution data, in association with sensor simulation to generate a fused hyperspectral image while preserving the inter band spectral variability. The results of this approach demonstrates that the spectral separation between classes has been better captured and thus helped improve classification accuracies over mixed pixels of the original low resolution hyperspectral data. In addition, the quantitative analysis using a rank-correlation metric shows the appropriateness of the proposed method over the other known approaches with regard to preserving the spectral signatures.


Author(s):  
Jing Li ◽  
Xiaorun Li ◽  
Liaoying Zhao

The minimization problem of reconstruction error over large hyperspectral image data is one of the most important problems in unsupervised hyperspectral unmixing. A variety of algorithms based on nonnegative matrix factorization (NMF) have been proposed in the literature to solve this minimization problem. One popular optimization method for NMF is the projected gradient descent (PGD). However, as the algorithm must compute the full gradient on the entire dataset at every iteration, the PGD suffers from high computational cost in the large-scale real hyperspectral image. In this paper, we try to alleviate this problem by introducing a mini-batch gradient descent-based algorithm, which has been widely used in large-scale machine learning. In our method, the endmember can be updated pixel set by pixel set while abundance can be updated band set by band set. Thus, the computational cost is lowered to a certain extent. The performance of the proposed algorithm is quantified in the experiment on synthetic and real data.


2021 ◽  
Vol 13 (4) ◽  
pp. 713
Author(s):  
Xuanwen Tao ◽  
Mercedes E. Paoletti ◽  
Juan M. Haut ◽  
Peng Ren ◽  
Javier Plaza ◽  
...  

Endmember estimation plays a key role in hyperspectral image unmixing, often requiring an estimation of the number of endmembers and extracting endmembers. However, most of the existing extraction algorithms require prior knowledge regarding the number of endmembers, being a critical process during unmixing. To bridge this, a new maximum distance analysis (MDA) method is proposed that simultaneously estimates the number and spectral signatures of endmembers without any prior information on the experimental data containing pure pixel spectral signatures and no noise, being based on the assumption that endmembers form a simplex with the greatest volume over all pixel combinations. The simplex includes the farthest pixel point from the coordinate origin in the spectral space, which implies that: (1) the farthest pixel point from any other pixel point must be an endmember, (2) the farthest pixel point from any line must be an endmember, and (3) the farthest pixel point from any plane (or affine hull) must be an endmember. Under this scenario, the farthest pixel point from the coordinate origin is the first endmember, being used to create the aforementioned point, line, plane, and affine hull. The remaining endmembers are extracted by repetitively searching for the pixel points that satisfy the above three assumptions. In addition to behaving as an endmember estimation algorithm by itself, the MDA method can co-operate with existing endmember extraction techniques without the pure pixel assumption via generalizing them into more effective schemes. The conducted experiments validate the effectiveness and efficiency of our method on synthetic and real data.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document