scholarly journals Fast Parallel All-Subgraph Enumeration Using Multicore Machines

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Saeed Shahrivari ◽  
Saeed Jalili

Enumerating all subgraphs of an input graph is an important task for analyzing complex networks. Valuable information can be extracted about the characteristics of the input graph using all-subgraph enumeration. Notwithstanding, the number of subgraphs grows exponentially with growth of the input graph or by increasing the size of the subgraphs to be enumerated. Hence, all-subgraph enumeration is very time consuming when the size of the subgraphs or the input graph is big. We propose a parallel solution namedSubenumwhich in contrast to available solutions can perform much faster. Subenum enumerates subgraphs using edges instead of vertices, and this approach leads to a parallel and load-balanced enumeration algorithm that can have efficient execution on current multicore and multiprocessor machines. Also, Subenum uses a fast heuristic which can effectively accelerate non-isomorphism subgraph enumeration. Subenum can efficiently use external memory, and unlike other subgraph enumeration methods, it is not associated with the main memory limits of the used machine. Hence, Subenum can handle large input graphs and subgraph sizes that other solutions cannot handle. Several experiments are done using real-world input graphs. Compared to the available solutions, Subenum can enumerate subgraphs several orders of magnitude faster and the experimental results show that the performance of Subenum scales almost linearly by using additional processor cores.

2017 ◽  
Vol 31 (20) ◽  
pp. 1750129 ◽  
Author(s):  
Jin-Xuan Yang ◽  
Xiao-Dong Zhang

There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.


2012 ◽  
Vol 6-7 ◽  
pp. 985-990
Author(s):  
Yan Peng ◽  
Yan Min Li ◽  
Lan Huang ◽  
Long Ju Wu ◽  
Gui Shen Wang ◽  
...  

Community structure detection has great importance in finding the relationships of elements in complex networks. This paper presents a method of simultaneously taking into account the weak community structure definition and community subgraph density, based on the greedy strategy for community expansion. The results are compared with several previous methods on artificial networks and real world networks. And experimental results verify the feasibility and effectiveness of our approach.


2006 ◽  
Vol 17 (07) ◽  
pp. 1055-1066 ◽  
Author(s):  
XIANGJUN SHEN ◽  
ZENGFU WANG ◽  
LENAN WU

The investigation of community structures in complex networks is an important issue in many domains and disciplines. In this paper, we propose a novel method to address the problem based on evaluation of the community structure. By testing the proposed algorithm on artificial and real-world networks, experimental results demonstrate that our approach is both accurate and fast. Our algorithm may shed light on uncovering the universal principles of network architectures and topologies.


2020 ◽  
Author(s):  
Renato Silva Melo ◽  
André Luís Vignatti

In the Target Set Selection (TSS) problem, we want to find the minimum set of individuals in a network to spread information across the entire network. This problem is NP-hard, so find good strategies to deal with it, even for a particular case, is something of interest. We introduce preprocessing rules that allow reducing the size of the input without losing the optimality of the solution when the input graph is a complex network. Such type of network has a set of topological properties that commonly occurs in graphs that model real systems. We present computational experiments with real-world complex networks and synthetic power law graphs. Our strategies do particularly well on graphs with power law degree distribution, such as several real-world complex networks. Such rules provide a notable reduction in the size of the problem and, consequently, gains in scalability.


2018 ◽  
Vol 32 (03) ◽  
pp. 1850018
Author(s):  
Yang Zhou ◽  
Haifei Miao ◽  
Wei Liu ◽  
Xiaoyun Chen ◽  
Jianjun Cheng

Community structure is one of the most important features of complex networks, a large number of methods have been proposed to extract community structures from networks. However, some of those methods suffer from the high time complexity, and some of them cannot obtain the acceptable results. In this paper, we borrow the idea from the database theory, and propose the concepts of functional dependency (FD) between nodes and node closure first, then we utilize these concepts to extract communities. This method takes both effectiveness and efficiency into consideration, the community detection process can be accomplished with O(m) time consumption. We conducted extensive experiments both on some synthetic networks and on some real-world networks, the experimental results demonstrate that the method can detect communities from a given network successfully.


2015 ◽  
Vol 29 (17) ◽  
pp. 1550108 ◽  
Author(s):  
Longjie Li ◽  
Lvjian Qian ◽  
Xiaoping Wang ◽  
Shishun Luo ◽  
Xiaoyun Chen

Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Vincenza Carchiolo ◽  
Marco Grassia ◽  
Alessandro Longheu ◽  
Michele Malgeri ◽  
Giuseppe Mangioni

AbstractMany systems are today modelled as complex networks, since this representation has been proven being an effective approach for understanding and controlling many real-world phenomena. A significant area of interest and research is that of networks robustness, which aims to explore to what extent a network keeps working when failures occur in its structure and how disruptions can be avoided. In this paper, we introduce the idea of exploiting long-range links to improve the robustness of Scale-Free (SF) networks. Several experiments are carried out by attacking the networks before and after the addition of links between the farthest nodes, and the results show that this approach effectively improves the SF network correct functionalities better than other commonly used strategies.


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-33
Author(s):  
Wenjun Jiang ◽  
Jing Chen ◽  
Xiaofei Ding ◽  
Jie Wu ◽  
Jiawei He ◽  
...  

In online systems, including e-commerce platforms, many users resort to the reviews or comments generated by previous consumers for decision making, while their time is limited to deal with many reviews. Therefore, a review summary, which contains all important features in user-generated reviews, is expected. In this article, we study “how to generate a comprehensive review summary from a large number of user-generated reviews.” This can be implemented by text summarization, which mainly has two types of extractive and abstractive approaches. Both of these approaches can deal with both supervised and unsupervised scenarios, but the former may generate redundant and incoherent summaries, while the latter can avoid redundancy but usually can only deal with short sequences. Moreover, both approaches may neglect the sentiment information. To address the above issues, we propose comprehensive Review Summary Generation frameworks to deal with the supervised and unsupervised scenarios. We design two different preprocess models of re-ranking and selecting to identify the important sentences while keeping users’ sentiment in the original reviews. These sentences can be further used to generate review summaries with text summarization methods. Experimental results in seven real-world datasets (Idebate, Rotten Tomatoes Amazon, Yelp, and three unlabelled product review datasets in Amazon) demonstrate that our work performs well in review summary generation. Moreover, the re-ranking and selecting models show different characteristics.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


Sign in / Sign up

Export Citation Format

Share Document