scholarly journals Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fraser I. Young ◽  
Vsevolod Telezhkin ◽  
Sarah J. Youde ◽  
Martin S. Langley ◽  
Maria Stack ◽  
...  

Cellular heterogeneity presents an important challenge to the development of cell-based therapies where there is a fundamental requirement for predictable and reproducible outcomes. Transplanted Dental Pulp Stem/Progenitor Cells (DPSCs) have demonstrated early promise in experimental models of spinal cord injury and stroke, despite limited evidence of neuronal and glial-like differentiation after transplantation. Here, we report, for the first time, on the ability of single cell-derived clonal cultures of murine DPSCs to differentiatein vitrointo immature neuronal-like and oligodendrocyte-like cells. Importantly, only DPSC clones with high nestin mRNA expression levels were found to successfully differentiate into Map2 and NF-positive neuronal-like cells. Neuronally differentiated DPSCs possessed a membrane capacitance comparable with primary cultured striatal neurons and small inward voltage-activated K+but not outward Na+currents were recorded suggesting a functionally immature phenotype. Similarly, only high nestin-expressing clones demonstrated the ability to adopt Olig1, Olig2, and MBP-positive immature oligodendrocyte-like phenotype. Together, these results demonstrate that appropriate markers may be used to provide an early indication of the suitability of a cell population for purposes where differentiation into a specific lineage may be beneficial and highlight that further understanding of heterogeneity within mixed cellular populations is required.

2021 ◽  
Vol 99 (4) ◽  
pp. 531-553 ◽  
Author(s):  
Cindrilla Chumduri ◽  
Margherita Y. Turco

AbstractHealthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT—ovaries, fallopian tubes, uterus, cervix and vagina—facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rashmi Nanjundappa ◽  
Dong Kong ◽  
Kyuhwan Shim ◽  
Tim Stearns ◽  
Steven L Brody ◽  
...  

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.


2017 ◽  
Vol 5 (1) ◽  
pp. 87-93
Author(s):  
O. Rybachuk ◽  
I. Arkhypchuk ◽  
Yu. Lazarenko

In recent years, there is a growing interest in the mechanisms of regeneration of damaged nerve tissue, including the spinal cord, as its injuries are quite common due to traffic accidents, industrial injuries and military actions. Damage to the spinal cord results in the loss of functional activity of the body below the injury site, which affects person’s ability to self-service and significantly reduces its efficiency. The effects of spinal injuries annually cause significant social and economic losses worldwide, including Ukraine. The development of new treatments for pathologies of the central nervous system requires mandatory pre-testing of their effectiveness in experiments in vitro and in vivo. Therefore, searching and creation of optimal animal model of spinal cord injury is in order to it meets most complete picture of the damage characteristic of real conditions in humans. This is an important task of modern neurophysiology. Such models can be used, primarily, for a more detailed clarification of the pathogenesis of all levels of nerve tissue damage and research of its own recovery potential by endogenous reparation mechanisms. In addition, experimental models allow to estimate the safety and predict the effectiveness of various therapeutic approaches to spinal cord injury.


2022 ◽  
Vol 15 ◽  
Author(s):  
Zachary T. Olmsted ◽  
Cinzia Stigliano ◽  
Brandon Marzullo ◽  
Jose Cibelli ◽  
Philip J. Horner ◽  
...  

Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2211-2215
Author(s):  
NF Olivieri ◽  
T Grunberger ◽  
Y Ben-David ◽  
J Ng ◽  
DE Williams ◽  
...  

Diamond-Blackfan anemia is a congenital disorder of erythropoiesis in humans, characterized by a macrocytic anemia often associated with physical anomalies. Mutations at either the W or Steel loci in the mouse also leads to a severe macrocytic anemia, as well as other developmental abnormalities. The W locus encodes the proto-oncogene c- kit, a member of the receptor tyrosine kinase family, while the Steel locus encodes a potent hematopoietic growth factor that is the ligand for c-kit. Growth of clonogenic marrow erythroid progenitor cells in vitro in the presence of the recombinant hematopoietic growth factors interleukin-3 (IL-3) and Steel was used to characterize this disease at the cellular level. Three patterns of in vitro marrow response to both recombinant IL-3 or Steel were observed among 10 Diamond-Blackfan patients: those that responded quantitatively and qualitatively almost as well as cells from normal marrow, those that responded at an intermediate level, and those that did not respond at all. These results provide evidence for cellular heterogeneity underlying the pathogenesis of this disorder and therefore raise the possibility that there may be more than one underlying molecular basis for the disease. No gross abnormalities in the structure of either the c-kit or Steel loci were observed in these patients. The normal response in culture of the progenitor cells from at least some patients to Steel with or without IL-3 raises the possibility of using this novel growth factor as a therapeutic agent in Diamond-Blackfan anemia.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark F. Pittenger ◽  
Dennis E. Discher ◽  
Bruno M. Péault ◽  
Donald G. Phinney ◽  
Joshua M. Hare ◽  
...  

AbstractThe terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1369-1369
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Allison Blair

Abstract Clonality studies of immunoglobulin rearrangements in B cell precursor acute lymphoblastic leukaemia (BCP ALL) has suggested that the disease may arise in cells already committed to the B cell lineage. In contrast, Ph+ ALL, which has a less favourable prognosis, is thought to arise in a more primitive haemopoietic cell. This was confirmed recently by studies that demonstrated only the CD34++/CD38− subfraction from Ph+ cases could engraft NOD/SCID mice. However, more recently there has been an increasing body of evidence to suggest that pre B and common ALL may also arise in a cell with a primitive phenotype. We have previously demonstrated that in childhood BCP ALL, the cells capable of long term proliferation in vitro in suspension culture and in vivo to engraft NOD/SCID mice are CD34+/CD10−, CD19−. We then attempted to further define these ALL progenitor cells by investigating the expression of CD133, the primitive stem cell marker. ALL cells capable of long term proliferation in vitro and NOD/SCID engrafting capacity were derived from the CD133+/CD19− subfraction only. These cells were capable of secondary NOD/SCID repopulation, demonstrating they had self-renewal ability. Here, we have attempted to further characterise these ALL progenitor cells to address the question as to whether BCP ALL arises in a common lymphoid progenitor cell or in a more primitive haemopoietic cell. ALL cells from five patients were sorted for CD133+/CD38+ and CD133+/CD38− populations, the sorted subfractions were analysed by cytogenetics and their functional ability was assessed in the NOD/SCID mouse model. Cytogenetic analyses by FISH revealed that both CD133+/CD38+ and CD133+/CD38− subfractions contained the BCR/ABL and ETV6/RUNX1 gene fusions, which had been detected in the patients at diagnosis, and in 1 case with del 17p, this deletion was also noted in the sorted subfractions. These sorted ALL subfractions and unsorted cells were injected intravenously into sublethally irradiated NOD/SCID mice. Bone marrow was harvested at 8–10 weeks post inoculation and analysed for the presence of human cells by flow cytometry. Engraftment was achieved in every case using 2.5x106–107 unsorted cells (0.1–4.5% CD45+). There was no evidence of human cell engraftment in recipients of the CD133+/CD38+ subfraction. However, in each case, engraftment was observed with the CD133+/CD38− subfraction, 0.6–3.2% CD45+ using as few as 6x102–4x104 cells. Using this sorting strategy, we were able to enrich NOD/SCID leukaemia engrafting cells by at least 4 logs compared to the bulk ALL population. Cytogenetic analyses demonstrated that the engrafted cells had the same karyotype as the patients at diagnosis, confirming engraftment of leukaemic cells. These findings suggest that the leukaemia has arisen in a cell with a primitive phenotype, similar to that described for normal haemopoietic stem cells and adds further support to the evidence for a primitive cell origin for B cell precursor ALL. Studies are ongoing to determine whether these primitive ALL cells have the same IgH rearrangements that are detected in the bulk ALL population at diagnosis. This primitive ALL population may be resistant to current chemotherapeutic strategies that are targeted against generic properties of the malignant blasts and subsequent relapses may arise from these cells. Hence, identification and characterisation of these putative ALL stem cells is essential for the development of more effective therapeutic strategies.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1536 ◽  
Author(s):  
Sara Barreto ◽  
Leonie Hamel ◽  
Teresa Schiatti ◽  
Ying Yang ◽  
Vinoj George

Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter’s inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.


Sign in / Sign up

Export Citation Format

Share Document