scholarly journals Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Haiying Li ◽  
Weiguo Miao ◽  
Jingfen Ma ◽  
Zhen Xv ◽  
Hai Bo ◽  
...  

Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Wang ◽  
Bingfeng Lin ◽  
Zhifeng Li ◽  
Jie Su ◽  
Yulin Feng

Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. Here, we elucidated the role of the natural compound cichoric acid (CA) on the MSU crystal-stimulated inflammatory response. The THP-1-derived macrophages (THP-Ms) were pretreated with CA and then stimulated with MSU suspensions. The protein levels of p65 and IκBα, the activation of the NF-κB signaling pathway by measuring the expression of its downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. CA treatment markedly inhibited the degradation of IκBα and the activation of NF-κB signaling pathway and reduced the levels of its downstream inflammatory genes such as IL-1β, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-M cells. Therefore, we infer that CA effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, thereby reducing the activation of the NF-κB signaling pathway and the NLRP3 inflammasome. These results suggest that CA could be a novel therapeutic strategy in averting acute episodes of gout.


Rheumatology ◽  
2020 ◽  
Author(s):  
Di Liu ◽  
Yizhi Xiao ◽  
Bin Zhou ◽  
Siming Gao ◽  
Liya Li ◽  
...  

Abstract Objectives Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM. Methods Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated. Results Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis. Conclusion Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Bai ◽  
Rui Yuan ◽  
Zhiheng Zhang ◽  
Lin Liu ◽  
Xinyu Wang ◽  
...  

Baicalein has been shown to have chondroprotective potential in vitro. However, its effect on disease modification in osteoarthritis (OA) is largely unknown. The present study is aimed at determining whether baicalein could slow the progression of OA and inhibit OA-related inflammation in a rat model of destabilization of the medial meniscus (DMM) and the underlying mechanisms. The rats subjected to DMM surgery were treated with baicalein (0.8, 1.6, and 3.2 μg/L, 50 μL, once a week) by intra-articular injection for 6 weeks. Dexamethasone (0.4 mg/mL, 50 μL, once a week) was used as a positive control. Histologic grading of cartilage degeneration was performed using the Osteoarthritis Research Society International (OARSI) recommended grading system (on a scale of 0-6). The expression levels of molecules associated with cartilage homeostasis and inflammatory cytokines were analyzed; moreover, the NLRP3 inflammasome activation and cartilage oxidative stress-associated molecules were determined. Baicalein treatment reduced the OARSI score and slowed OA disease progression in a dose-dependent manner within a certain range. Compared with DMM rats, intra-articular injection of baicalein led to (1) reduced levels of inflammatory mediates such as IL-1β and TNF-α, (2) reduced immunochemical staining of MMP-13 and ADAMTS-5, (3) suppressed immunochemical staining loss of type II collagen, (4) reduced expression of cartilage degradation markers including CTX-II and COMP in urine, and (5) inhibited NLRP3 inflammasome activation rather than regulated expression of SOD, GSH, and MDA. In contrast to the administration of baicalein, dexamethasone injection showed similar effects to slow OA progression, while dexamethasone inhibited NLRP3 inflammasome partly through decreasing levels of SOD, GSH, and MDA. This study indicated that baicalein may have the potential for OA prevention and exerts anti-inflammatory effects partly via suppressing NLRP3 inflammasome activation without affecting oxidative stress-associated molecules, and inhibition of cartilage catabolism enzymes in an OA rat model.


Sign in / Sign up

Export Citation Format

Share Document