scholarly journals Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention

2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
John Pichtel

During oil and natural gas production, so-called “produced water” comprises the largest byproduct stream. In addition, many oil and gas operations are augmented via injection of hydraulic fracturing (HF) fluids into the formation. Both produced water and HF fluids may contain hundreds of individual chemicals, some known to be detrimental to public health and the environment. Oil and gas production wastewater may serve a range of beneficial purposes, particularly in arid regions, if managed correctly. Numerous treatment technologies have been developed that allow for injection, discharge to the land surface, or beneficial reuse. Although many papers have addressed the effects of oil and gas production wastewater (OGPW) on groundwater and surface water quality, significantly less information is available on the effects of these fluids on the soil resource. This review paper compiles fundamental information on numerous chemicals used and produced during oil and gas development and their effects on the soil environment. Additionally, pollution prevention technologies relating to OGPW are presented. An understanding of the effects of OGPW on soil chemical, physical, and biological properties can provide a foundation for effective remediation of OGPW-affected soils; additionally, sustainable reuse of oil and gas water for irrigation and industrial purposes may be enhanced.

2021 ◽  
Author(s):  
Basil Ogbunude ◽  
Aniekan Obot ◽  
Abdul-Wahab Sa'ad ◽  
Sunday Maxwell-Amgbaduba ◽  
Etta Agbor ◽  
...  

Abstract Often, the production of oil and gas from underground reservoirs is accompanied by produced water which generally increases with time for a matured field, attributable to natural water encroachment, bottom water ingress, coning effect due to higher production rates, channeling effects, etc. This trend poses a production challenge with respect to increased OPEX cost and environmental considerations of treatment/handling and disposal of the produced water considering the late life performance characterized by low reward margins. Hence, produced water management solutions that reduce OPEX cost is key to extending the field life whilst ensuring a positive cash flow for the asset. SK field is located in the Swamp Area of the Niger Delta, with a capacity of 1.1Bcf gas plant supplying gas to a nearby LNG plant. Oil and gas production from the field is evacuated via the liquid and gas trunk lines respectively. Due to the incessant tampering with oil delivery lines and environmental impact of spillage, the condensate is spiked through the gas trunk line to the LNG plant. Largely, the water/effluent contained in the tank is evacuated through the liquid line. Based on the availability of the liquid line (ca. 40%-60%), the produced water is a constraint to gas production with estimated tank endurance time (ca. 8 days at 500MMscfd). This leads to creaming of gas production and indeed gas deferments due to produced water management, making it difficult to meet the contractual supply obligation to the LNG plant. An interim solution adopted was to barge the produced water to the oil and gas export terminal, with an associated OPEX cost of ca. US$2Mln/month. Upon further review of an alternate barging option, this option was considered too expensive, inefficient and unsustainable with inherent HSSE exposure. Therefore, a produced water re-injection project was scoped and executed as a viable alternative to produced water management. This option was supported by the Regulators as a preferred option for produced water management for the industry.


2021 ◽  
pp. 24-27
Author(s):  
F.G. Hasanov ◽  
◽  
S.B. Bayramov ◽  
R.M. Hasanzade ◽  
A.B. Garayev ◽  
...  

The construction of middle oil-gathering facility, in which technological processes are managed in a closed medium is necessary for environmental protection to control highly corrosive medium in oil and gas production. Associated gas separated from the fluid in initial separation unit within middle oil-gathering facility enters gas-gathering point with low pressure, and the liquid - into the pig of oil, water and sand, which should be constructed from iron concrete for cleaning from mechanical impurities sediments and salt as well. The liquid charge from the separation unit and pig of oil, water and sand is based upon the law of communicating vessels. To supply long-life for reservoirs, the inner and outer walls should be covered with a special coating and additionally, electrochemical protection should be provided as well.


2020 ◽  
Vol 129 (4) ◽  
pp. 14-18
Author(s):  
L. A. Magadova ◽  
◽  
K. A. Poteshkina ◽  
V. D. Vlasova ◽  
M. S. Pilipenko ◽  
...  

The effect of carbon dioxide corrosion on the pipeline transport system and its protection methods are considered in this article. The corrosion inhibitors represented by imidazoline-based compositions and industrial samples of corrosion inhibitors are used as protective reagents, and the model of produced water saturated with carbon dioxide is used as an aggressive environment. The protective properties of inhibitors and the corrosion rate were evaluated by gravimetric analysis. The paper presents the results of the study of industrial samples and inhibitory compositions developed on the basis of the REC “Promyslovaya himiya”. According to the results of the work, a positive effect of additives of nonionic surfactants on the protective properties of inhibitors was noted.


2021 ◽  
Vol 73 (07) ◽  
pp. 7-8
Author(s):  
Pam Boschee

Drought conditions rated as “moderate or worse” affected 31 US states as of 8 June, as reported by the US National Integrated Drought Information System. Particularly dry are the West and Upper Midwest regions, relevant to the Permian and Bakken, respectively. While not a record-level drought, attention is turning to the Missouri River in North Dakota where streamflow levels are at low levels for this time of year—about 48% below the seasonal average. About 96% of the water in North Dakota’s rivers and streams flows through it, making it one of the main sources of fresh water for oil and gas production in the Bakken. In the extreme drought, water restrictions could come into play. Throughout the industry, recycling and reuse of frac and produced water have been studied, and where the chemical makeup of the frac or produced water is suitable for optimal and economical treatment, it has been implemented. However, Bakken production is typically associated with 1.0 to 1.5 bbl of produced water per barrel of oil (a water cut of approximately 50%). It is highly saline with total dissolved solids (TDS) ranging up to 350,000 mg/L (seawater is about 35,000, or 10 times less salty than Bakken brine). Treatment options for such high TDS levels are limited and often cost-prohibitive. The Bakken’s produced water volumes increased fourfold since 2008 to about 740 million bbl per year due to increasing volumes per well and increasing water cut. Produced water disposal volumes in the same period increased fivefold to about 680 million bbl per year. More than 95% of saltwater disposal (SWD) targets the Inyan Kara Formation, the lowermost sandstone interval of the Dakota Group. The increase in SWD volumes has resulted in localized areas of high pressure in the formation in geographic regions associated with high levels of oil and gas activity. This increased pressure affects the economics and risk associated with the drilling of new wells that now require additional intermediate casing strings (“Dakota Strings”), adding a cost of $300,000 to $700,000 per well. About 200 wells to date have been identified with additional casing strings, according to the Energy & Environmental Research Center (EERC). Faced with the challenges of high salinity in recycling/reuse of produced water, constraints on SWD injection, freshwater limitations, pressure regulation, and inflated drilling costs, a 2-year project was begun in January 2020 which may hold promise for greater use of the produced water. Participants in the $1.3-million project are EERC, Nuverra Environmental Solutions, and the US Department of Energy.


1974 ◽  
Vol 188 (1) ◽  
pp. 11-24 ◽  
Author(s):  
L. C. Allcock

Development of offshore oil and gas production from the continental shelf and in even deeper water will be dependent on engineers. It is of primary importance to understand the nature of the oil and gas production industry in order to follow more clearly the contribution that will be required from many of the professional branches of engineering, and a great deal of new technology must be developed in order that the problems of the future may be overcome. The difficulty may not be in defining the future engineering of oil and gas development but in finding engineers in sufficient numbers to meet the demand.


2020 ◽  
Vol 190 (2) ◽  
pp. 165-175
Author(s):  
Yasser Y Ebaid ◽  
Yasser Hassan ◽  
Wael M Elshemey

Abstract An oil and gas production facility in the western desert of Egypt was investigated for possible radiation risks due to the routine operation. Radium-226, Radium-228 and Potassium-40 were assessed in the soil samples collected from the adjacent soakaway pond. The average 226Ra, 228Ra and 40K activity concentrations were 881.0 ± 42.0, 966.0 ± 43.0 and 143.0 ± 8.0 Bq kg−1, respectively. Both 226Ra and 228Ra were above the world ranges, while 40K was within the world range. Water samples from the facilities effluent’s produced water showed elevated levels of both radium isotopes. The effective doses at three different points on the separator outer surfaces over the period between 1995 and 2014 were assessed. The maximum reading was 5.4 μSv h−1 on 2014. The time has significantly contributed to the enhancement of the effective dose readings. However, they are still within the expected range encountered in similar studies reported by International Atomic Energy Agency (IAEA).


1997 ◽  
Vol 35 (2) ◽  
pp. 269
Author(s):  
Michael Harrington ◽  
Colm Seviour ◽  
Mark MacDonald ◽  
James Dickson

The authors discuss recent developments in oil and gas production in Newfoundland and Nova Scotia and the legal and regulatory regimes which affect both interest holders and oil and gas practitioners. The authors pay particular attention to jurisdictional issues arising from the intersection of federal and provincial legislation and clarify when particular legislation does or does not apply. The authors then examine the legal requirements for the approval of and implementation of oil and gas development plans, the impact of provincial royalty and tax regimes on development, and the criteria for the granting of significant discovery licenses. Finally, the authors discuss the roles of provincial and federal bodies with respect to regulatory and environmental inter-jurisdictional issues.


Sign in / Sign up

Export Citation Format

Share Document