scholarly journals An Algorithmic Approach to Wireless Sensor Networks Localization Using Rigid Graphs

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shamantha Rai B ◽  
Shirshu Varma

In this work estimating the position coordinates of Wireless Sensor Network nodes using the concept of rigid graphs is carried out in detail. The range based localization approaches use the distance information measured by the RSSI, which is prone to noise, due to effects of path loss, shadowing, and so forth. In this work, both the distance and the bearing information are used for localization using the trilateration technique. Rigid graph theory is employed to analyze the localizability, that is, whether the nodes of the WSN are uniquely localized. The WSN graph is divided into rigid patches by varying appropriately the communication power range of the WSN nodes and then localizing the patches by trilateration. The main advantage of localizing the network using rigid graph approach is that it overcomes the effect of noisy perturbed distance. Our approach gives a better performance compared to robust quads in terms of percentage of localizable nodes and computational complexity.

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mariam Akbar ◽  
Nadeem Javaid ◽  
Wadood Abdul ◽  
Sanaa Ghouzali ◽  
Abid Khan ◽  
...  

Mobile Sink (MS) based routing strategies have been widely investigated to prolong the lifetime of Wireless Sensor Networks (WSNs). In this paper, we propose two schemes for data gathering in WSNs: (i) MS moves on random paths in the network (RMS) and (ii) the trajectory of MS is defined (DMS). In both the schemes, the network field is logically divided into small squares. The center point of each partitioned area is the sojourn location of the MS. We present three linear programming based models: (i) to maximize network lifetime, (ii) to minimize path loss, and (iii) to minimize end to end delay. Moreover, a geometric model is proposed to avoid redundancy while collecting information from the network nodes. Simulation results show that our proposed schemes perform better than the selected existing schemes in terms of the selected performance metrics.


Game Theory ◽  
2017 ◽  
pp. 337-352
Author(s):  
Mehran Asadi ◽  
Afrand Agah ◽  
Christopher Zimmerman

In this chapter, the authors examine the impacts of applying game theory on the network throughput, network voltage loss, and accuracy of malicious node detection in wireless sensor networks. Nodes in a wireless sensor network use our proposed protocol when deciding whether or not to forward packets they receive from other sensors in order to conserve power. Wireless sensor network nodes achieve this by optimizing their decision-making based on a framework using game theory. Defining a suitable cost and profit for routing and forwarding incoming packets and keeping a history of past behaviors of non-cooperating nodes gradually forces malicious nodes out of the wireless sensor network.In this chapter, the authors examine the impacts of applying game theory on the network throughput, network voltage loss, and accuracy of malicious node detection in wireless sensor networks. Nodes in a wireless sensor network use our proposed protocol when deciding whether or not to forward packets they receive from other sensors in order to conserve power. Wireless sensor network nodes achieve this by optimizing their decision-making based on a framework using game theory. Defining a suitable cost and profit for routing and forwarding incoming packets and keeping a history of past behaviors of non-cooperating nodes gradually forces malicious nodes out of the wireless sensor network.


Author(s):  
Mehran Asadi ◽  
Afrand Agah ◽  
Christopher Zimmerman

In this chapter, the authors examine the impacts of applying game theory on the network throughput, network voltage loss, and accuracy of malicious node detection in wireless sensor networks. Nodes in a wireless sensor network use our proposed protocol when deciding whether or not to forward packets they receive from other sensors in order to conserve power. Wireless sensor network nodes achieve this by optimizing their decision-making based on a framework using game theory. Defining a suitable cost and profit for routing and forwarding incoming packets and keeping a history of past behaviors of non-cooperating nodes gradually forces malicious nodes out of the wireless sensor network.In this chapter, the authors examine the impacts of applying game theory on the network throughput, network voltage loss, and accuracy of malicious node detection in wireless sensor networks. Nodes in a wireless sensor network use our proposed protocol when deciding whether or not to forward packets they receive from other sensors in order to conserve power. Wireless sensor network nodes achieve this by optimizing their decision-making based on a framework using game theory. Defining a suitable cost and profit for routing and forwarding incoming packets and keeping a history of past behaviors of non-cooperating nodes gradually forces malicious nodes out of the wireless sensor network.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Anil Kumar Sagar ◽  
D. K. Lobiyal

Some applications of wireless sensor network requireK-coverage andK-connectivity to ensure the system to be fault tolerance and to make it more reliable. Therefore, it makes coverage and connectivity an important issue in wireless sensor networks. In this paper, we proposedK-coverage andK-connectivity models for wireless sensor networks. In both models, nodes are distributed according to Poisson distribution in the sensor field. To make the proposed model more realistic we used log-normal shadowing path loss model to capture the radio irregularities and studied its impact onK-coverage andK-connectivity. The value ofKcan be different for different types of applications. Further, we also analyzed the problem of node failure forK-coverage model. In the simulation section, results clearly show that coverage and connectivity of wireless sensor network depend on the node density, shadowing parameters like the path loss exponent, and standard deviation.


2012 ◽  
Vol 490-495 ◽  
pp. 1392-1396 ◽  
Author(s):  
Chu Hang Wang

Topology control is an efficient approach which can reduce energy consumption for wireless sensor networks, and the current algorithms mostly focus on reducing the nodes’ energy consumption by power adjusting, but pay little attention to balance energy consumption of the whole network, which results in premature death of many nodes. Thus, a distributed topology control algorithm based on path-loss and residual energy (PRTC) is designed in this paper. This algorithm not only maintains the least loss links between nodes but also balances the energy consumption of the network. The simulation results show that the topology constructed by PRTC can preserve network connectivity as well as extend the lifetime of the network and provide good performance of energy consumption.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2017 ◽  
Vol 13 (07) ◽  
pp. 36
Author(s):  
Yuxia Shen

<p><span style="font-size: medium;"><span style="font-family: 宋体;">In wireless sensor networks, for improving the time synchronization perfromance of online monitoring and application of ZigBee protocol, a scheme is designed. For this objective, first of all, the ZigBee protocol specification is summarized, a profound analysis of the hardware abstraction architecture of TinyOS operating system is made; the advantages of the ZigBee protocol compared with the traditional radio technology are comparatively analyzed. At the same time, the node design block diagram based on CC2430 and related development system is provided. In the TinyOS2.x operating system, we analyze CC2430 application program abstract architecture, and on this basis, give the realization process of program design. The research results showed that we achieve an on-line monitoring system based on ZigBee protocol, which has realistic significance of applying ZigBee protocol in wireless sensor network of electrical equipment online monitoring. Based on the above research, it is concluded that the online monitoring system can collect the temperature parameters of the monitored object in real time that it can be widely applied in wireless sensor networks.</span></span></p>


Author(s):  
Mohammad Abdel Rahim ◽  
Mohamed Hadi Habaebi ◽  
Jalel Chebil ◽  
Aisha Hassan A. Hashim ◽  
Musse Mohamud Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document