scholarly journals Development of Flexible Polyurethane Nanostructured Biocomposite Foams Derived from Palm Olein-Based Polyol

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Srihanum Adnan ◽  
Tuan Noor Maznee Tuan Ismail ◽  
Norhayati Mohd Noor ◽  
Nik Siti Mariam Nek Mat Din ◽  
Nurul ‘Ain Hanzah ◽  
...  

This study examined the effect of organoclay montmorillonite (OMMT) on the mechanical properties and morphology of flexible polyurethane/OMMT nanocomposite (PU/OMMT) foams prepared from petroleum- and palm olein-based polyols. Palm-based PU foams exhibited inferior mechanical strength as compared to neat petroleum PU foams. However, addition of OMMT significantly improved the foams strength of flexible polyurethane/OMMT nanocomposite foams prepared from palm olein-based polyol (PU bionanocomposite foam). The morphology analysed by scanning electron microscopy (SEM) showed that the cell size of the foam decreased with increasing OMMT content. PU bionanocomposite foam with 5 wt% of OMMT had the most improved tensile (63%) and tear (48%) strengths compared to its neat counterpart. Transmission electron microscopy (TEM) revealed the exfoliated structure of the respective foam. It was concluded that OMMT improved mechanical properties and morphology of PU foams.

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3351 ◽  
Author(s):  
Wei Chen ◽  
Xiaoyong Zhang ◽  
YongCheng Lin ◽  
Kechao Zhou

Multi-pass hot rolling was performed on bi-modal Ti-55511 alloy with 50% rolling reduction at 700 °C. Mechanical properties were evaluated by tensile test, and microstructure evolution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the Ti-55511 alloy with bi-modal microstructure exhibits good strength and high ductility (1102 MPa, 21.7%). Comparatively, after 50% hot rolling, an enhanced strength and decreased ductility were obtained. The refinement of α phases leads to the increased tensile strength, while the fragmentation of the equiaxed α phase results in a decreased ductility. The fragmentation process of equiaxed α phases followed the sequence of: elongation of α phases → formation of grooves and localized shear bands → the final fragmentation accomplished via deepening grooves.


2013 ◽  
Vol 420 ◽  
pp. 123-128
Author(s):  
Chun Fu Hong ◽  
Jian Zhong Wang ◽  
Wei Yan ◽  
Ang Ding ◽  
Zhi Yong Liu ◽  
...  

This paper reports two films, Ti/a-C and Ti/a-C:H, prepared on the Ti-6Al-4V alloys by magnetron sputtering in PVD and CVD process, respectively. The morphology and microstructure were characterized by Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Both films show nanosized Ti clusters incorporated into the amorphous carbon matrix. Mechanical properties of the films were investigated by nanoindentation and ball-on-disk tribo-test. Ti/a-C film shows a hardness as high as 40.9 GPa, while that of Ti/a-C:H is 12.2 GPa. Both films show reduced friction and high wear resistance.


2016 ◽  
Vol 850 ◽  
pp. 687-692
Author(s):  
Yue Wu ◽  
Xu Dong Wang ◽  
Jiong Li Li ◽  
Zhao Hui Feng

The effect of solution temperature on the solid solubility, microstructure and mechanical properties of 2A66 Al-Cu-Li alloy was studied by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. The results show that with the solution temperature increasing from 480°C to 520°C,the amount of residual phases decreased and the solid solubility increased obviously, while the recrystallization hardly changed with the increasing of solution temperature. With the solution temperature increased to above 530°C, the amount of residual phases almost did not change. With the solution temperature increasing to above 540°C, the alloy was over-burnt obviously. Complete dissolution of the particles in the 2A66 Al-Cu-Li alloy was obtained after solution treatment at 520°C.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Venita F. Allison ◽  
J. E. Ubelaker ◽  
J. H. Martin

It has been suggested that parasitism results in a reduction of sensory structures which concomitantly reflects a reduction in the complexity of the nervous system. The present study tests this hypothesis by examining the fine morphology and the distribution of sensory receptors for two species of aspidogastrid trematodes by transmission and scanning electron microscopy. The species chosen are an ectoparasite, Cotylaspis insignis and an endoparasite, Aspidogaster conchicola.Aspidogaster conchicola and Cotylaspis insignis were obtained from natural infections of clams, Anodonta corpulenta and Proptera purpurata. The specimens were fixed for transmission electron microscopy in phosphate buffered paraformaldehyde followed by osmic acid in the same buffer, dehydrated in an ascending series of ethanol solutions and embedded in Epon 812.


Author(s):  
Thomas P. Turnbull ◽  
W. F. Bowers

Until recently the prime purposes of filters have been to produce clear filtrates or to collect particles from solution and then remove the filter medium and examine the particles by transmission electron microscopy. These filters have not had the best characteristics for scanning electron microscopy due to the size of the pores or the surface topography. Advances in polymer chemistry and membrane technology resulted in membranes whose characteristics make them versatile substrates for many scanning electron microscope applications. These polysulphone type membranes are anisotropic, consisting of a very thin (0.1 to 1.5 μm) dense skin of extremely fine, controlled pore texture upon a much thicker (50 to 250μm), spongy layer of the same polymer. Apparent pore diameters can be controlled in the range of 10 to 40 A. The high flow ultrafilters which we are describing have a surface porosity in the range of 15 to 25 angstrom units (0.0015-0.0025μm).


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


Sign in / Sign up

Export Citation Format

Share Document