scholarly journals Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kristien Van Belle ◽  
Jean Herman ◽  
Louis Boon ◽  
Mark Waer ◽  
Ben Sprangers ◽  
...  

B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


1993 ◽  
Vol 178 (5) ◽  
pp. 1765-1769 ◽  
Author(s):  
A H Lazarus ◽  
K Kawauchi ◽  
M J Rapoport ◽  
T L Delovitch

Ligation of a B lymphocyte surface immunoglobulin (sIg) antigen receptor (AgR) by its specific Ag ligand initiates a signaling pathway that culminates in B cell activation. However, many events of this pathway have not been elucidated. Here we present three novel findings that demonstrate directly that AgR-mediated signaling in B cells functions by the p21ras/ras.GAP-dependent pathway. First, stimulation of TA3 7.9 Ag-specific murine B lymphoma cells for 2 min with either Ag or F(ab')2 anti-IgM induces p21ras activation as measured by an increase in the GTP/GDP ratio of its bound nucleotides. This activation of p21ras does not occur via a change in its guanine nucleotide exchange rate. Second, Ag stimulation results in the inhibition of activity of p120 ras.GAP, a protein that regulates p21ras activation. Tyrosine phosphorylation of ras.GAP occurs within 1 min after Ag stimulation but is no longer detectable at 20 min after stimulation, at which time ras.GAP activity remains inhibited. Thus, tyrosine phosphorylation of ras.GAP is not required for the inhibition of its activity. Third, despite the role proposed for a ras.GAP-associated p190 protein in the control of ras.GAP activity in B cells, p190 was not detectable either in anti-ras.GAP immunoprecipitates of [35S]methionine labeled lysates of Ag-stimulated or -unstimulated 7.9 cells or as a tyrosine phosphoprotein in Western blots of anti-ras.GAP immunoprecipitates of Ag-stimulated 7.9 cell lysates. Inasmuch as the TA3 7.9 B lymphoma is representative of a mature, sIgM-bearing B cell, our observations raise the intriguing possibility that the capacity of p190 to associate with ras.GAP and regulate the activities of ras.GAP and p21ras in a B cell is dependent on the stage of differentiation of the B cell.


1997 ◽  
Vol 185 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Juha Punnonen ◽  
Benjamin G. Cocks ◽  
José M. Carballido ◽  
Bruce Bennett ◽  
David Peterson ◽  
...  

In this study it is shown that both membrane-bound and soluble forms of signaling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B cells. Activated B cells express the membrane-bound form of SLAM (mSLAM), the soluble (s) and the cytoplasmic (c) isoforms of SLAM, and the expression levels of mSLAM on B cells are rapidly upregulated after activation in vitro. Importantly, recombinant sSLAM and L cells transfected with mSLAM efficiently enhance B cell proliferation induced by anti-μ mAbs, anti-CD40 mAbs or Staphylococcus aureus Cowan I (SAC) in the presence or absence of IL-2, IL-4, IL-10, IL-12, or IL-15. sSLAM strongly enhances proliferation of both freshly isolated B cells and B cells derived from long-term in vitro cultures, indicating that SLAM acts not only during the initial phase of B cell activation but also during the expansion of preactivated B cells. In addition, sSLAM enhances production of IgM, IgG, and IgA by B cells activated by antiCD40 mAbs. SLAM has recently been shown to be a high affinity self-ligand, and the present data suggest that signaling through homophilic SLAM–SLAM binding during B–B and B–T cell interactions enhances the expansion and differentiation of activated B cells.


2021 ◽  
Vol 118 (7) ◽  
pp. e2021342118
Author(s):  
Kathrin Kläsener ◽  
Julia Jellusova ◽  
Geoffroy Andrieux ◽  
Ulrich Salzer ◽  
Chiara Böhler ◽  
...  

CD20 is a B cell-specific membrane protein and represents an attractive target for therapeutic antibodies. Despite widespread usage of anti-CD20 antibodies for B cell depletion therapies, the biological function of their target remains unclear. Here, we demonstrate that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. CRISPR/Cas9-mediated ablation of CD20 in resting B cells resulted in relocalization and interaction of the IgM-class B cell antigen receptor with the coreceptor CD19. This receptor rearrangement led to a transient activation of B cells, accompanied by the internalization of many B cell surface marker proteins. Reexpression of CD20 restored the expression of the B cell surface proteins and the resting state of Ramos B cells. Similarly, treatment of Ramos or naive human B cells with the anti-CD20 antibody rituximab induced nanoscale receptor rearrangements and transient B cell activation in vitro and in vivo. A departure from the resting B cell state followed by the loss of B cell identity of CD20-deficient Ramos B cells was accompanied by a PAX5 to BLIMP-1 transcriptional switch, metabolic reprogramming toward oxidative phosphorylation, and a shift toward plasma cell development. Thus, anti-CD20 engagement or the loss of CD20 disrupts membrane organization, profoundly altering the fate of human B cells.


1992 ◽  
Vol 176 (5) ◽  
pp. 1343-1353 ◽  
Author(s):  
L Reininger ◽  
T Radaszkiewicz ◽  
M Kosco ◽  
F Melchers ◽  
A G Rolink

Pre-B cell lines proliferating for several months on stromal cells in the presence of interleukin 7 (IL-7) were established from fetal liver of (NZB x NZW)F1 mice. They express the B lineage-specific markers PB76, B220, and VpreB, but do not express surface immunoglobulin (sIg). Upon removal of IL-7 from the culture, they differentiate to sIg+ B cells that can then be stimulated by lipopolysaccharide to become IgM-secreting cells. Transfer of these pre-B cell lines into SCID mice leads to hypergammaglobulinemia of IgM (600-900 micrograms/ml), IgG2a (1-3 mg/ml), and IgG3 (300-500 micrograms/ml) for the next 3-5 mo. The spleen appears populated with (NZB x NZW)F1-derived pre-B cells, few B cells, and many IgM and/or IgG-producing plasma cells. In contrast, SCID mice populated with pre-B cell lines of normal (C57BL/6 x DBA/2)F1 mouse fetal liver develop normal levels of serum IgM (approximately 100-300 micrograms/ml), almost no detectable levels of IgG, and no plasma cell hyperplasia. The (NZB x NZW)F1 pre-B cell-populated SCID mice contain elevated serum titers of IgG antinuclear autoantibodies, but no retroviral gp70-specific nor erythrocyte-specific autoantibodies. Up to 20% of the SCID mice develop proteinuria as a consequence of IgG deposits in the kidney glomeruli during a 7-mo period of observation. All signs of autoimmune disease seen in these mice are independent of the sex of the SCID host. This experimental system provides a distinction between the disease-determining (NZB x NZW)F1 genes, which are expressed in the B lymphocyte lineage and cause the development of the disease, from those expressed in other cell lineages which only modulate its progression.


2020 ◽  
Author(s):  
Kathrin Klasener ◽  
Julia Jellusova ◽  
Geoffroy Andrieux ◽  
Ulrich Salzer ◽  
Chiara Boehler ◽  
...  

CD20 is a B cell specific membrane protein and a target of therapeutic antibodies such as rituximab (RTX). In spite of the prominent usage of anti-CD20 antibodies in the clinic little is known about the biological function of CD202. Here we show that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. A CRISPR/Cas-based ablation of CD20 in Ramos B cells results in a relocalisation of the IgM B cell antigen receptor (IgM-BCR) and the co-receptor CD19. The resulting IgM-BCR/CD19 signaling synapse leads to transient B cell activation followed by plasma cell differentiation. Similarly to CD20-deficient Ramos cells, naive human B cells treated with rituximab in vitro or isolated from patients during rituximab administration display hallmarks of transient activation characterized by the formation of the IgM-BCR/CD19 signaling synapse, followed by CD19 and IgM-BCR downregulation. Moreover, increased expression of specific plasma cell genes can be observed after rituximab treatment in relapsed CLL patients. In summary we identify CD20 as a gatekeeper of the resting state on human B cells and demonstrate that a disruption of the nanoscale organization of the B cell surface via CD20 deletion or anti-CD20 treatment profoundly alters B cell fate.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 824-829
Author(s):  
BS Wilson ◽  
JL Platt ◽  
NE Kay

Several mouse monoclonal IgG antibodies (AB1, AB2, AB3, and AB5) were developed that reacted with a 140,000 mol wt glycoprotein on the surface of cultured RAJI B lymphoid cells. The antibodies reacted with purified normal human peripheral blood B cells and CLL Ig+ B cells and showed specific germinal center and mantle zone staining in tissue sections of secondary lymphoid organs. Immunodepletion studies using 125I surface-labeled Raji cell membrane antigens demonstrated that the antigen identified by AB5 is the same 140,000 mol wt glycoprotein detected by anti-B2 that has recently been shown to react with the C3d fragment or CR2 receptor. (Iida et al: J Exp Med 158:1021, 1983). Addition of the AB series and anti-B2 monoclonal antibodies to cultures of purified human peripheral blood B cells resulted in the uptake of 3H- thymidine at two to six times background control levels provided that irradiated autologous T cells were added to the culture. Stimulation was not evoked by other monoclonal antibodies to B cell surface molecules (ie, B1, BA-1, BA-2, and HLA-DR). Pepsin-generated F(ab')2 fragments of anti-CR2 antibodies were essentially as effective as the intact IgG molecule in stimulating B cells. Induction of B cell proliferation by antibody binding to CR2 suggests that the C3d receptor may have an integral role in regulation of humoral immune response.


1994 ◽  
Vol 94 (4) ◽  
pp. 1585-1596 ◽  
Author(s):  
A A Postigo ◽  
M Marazuela ◽  
F Sánchez-Madrid ◽  
M O de Landázuri
Keyword(s):  
B Cells ◽  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document