scholarly journals Antigen-induced B lymphocyte activation involves the p21ras and ras.GAP signaling pathway.

1993 ◽  
Vol 178 (5) ◽  
pp. 1765-1769 ◽  
Author(s):  
A H Lazarus ◽  
K Kawauchi ◽  
M J Rapoport ◽  
T L Delovitch

Ligation of a B lymphocyte surface immunoglobulin (sIg) antigen receptor (AgR) by its specific Ag ligand initiates a signaling pathway that culminates in B cell activation. However, many events of this pathway have not been elucidated. Here we present three novel findings that demonstrate directly that AgR-mediated signaling in B cells functions by the p21ras/ras.GAP-dependent pathway. First, stimulation of TA3 7.9 Ag-specific murine B lymphoma cells for 2 min with either Ag or F(ab')2 anti-IgM induces p21ras activation as measured by an increase in the GTP/GDP ratio of its bound nucleotides. This activation of p21ras does not occur via a change in its guanine nucleotide exchange rate. Second, Ag stimulation results in the inhibition of activity of p120 ras.GAP, a protein that regulates p21ras activation. Tyrosine phosphorylation of ras.GAP occurs within 1 min after Ag stimulation but is no longer detectable at 20 min after stimulation, at which time ras.GAP activity remains inhibited. Thus, tyrosine phosphorylation of ras.GAP is not required for the inhibition of its activity. Third, despite the role proposed for a ras.GAP-associated p190 protein in the control of ras.GAP activity in B cells, p190 was not detectable either in anti-ras.GAP immunoprecipitates of [35S]methionine labeled lysates of Ag-stimulated or -unstimulated 7.9 cells or as a tyrosine phosphoprotein in Western blots of anti-ras.GAP immunoprecipitates of Ag-stimulated 7.9 cell lysates. Inasmuch as the TA3 7.9 B lymphoma is representative of a mature, sIgM-bearing B cell, our observations raise the intriguing possibility that the capacity of p190 to associate with ras.GAP and regulate the activities of ras.GAP and p21ras in a B cell is dependent on the stage of differentiation of the B cell.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kristien Van Belle ◽  
Jean Herman ◽  
Louis Boon ◽  
Mark Waer ◽  
Ben Sprangers ◽  
...  

B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation.


2020 ◽  
Vol 318 (5) ◽  
pp. F1258-F1270 ◽  
Author(s):  
Li Xiang ◽  
An Liu ◽  
Guoshuang Xu

B lymphocyte hyperactivity plays a pathogenic role in systemic lupus erythematosus (SLE), and spliced X box-binding protein 1 (XBP1s) has been implicated in B cell maturation and differentiation. We hypothesized that blockade of the XBP1s pathway inhibits the B cell hyperactivity underlying SLE and lupus nephritis (LN) development. In the present study, we systematically evaluated the changes in B cell activation induced by the Xbp1 splicing inhibitor STF083010 in a pristane-induced lupus mouse model. The lupus mouse model was successfully established, as indicated by the presence of LN with markedly increased urine protein levels, renal deposition of Ig, and mesangial cell proliferation. In lupus mice, B cell hyperactivity was confirmed by increased CD40 and B cell-activating factor levels. B cell activation and plasma cell overproduction were determined by increases in CD40-positive and CD138-positive cells in the spleens of lupus mice by flow cytometry and further confirmed by CD45R and Ig light chain staining in the splenic tissues of lupus mice. mRNA and protein expression of XBP1s in B cells was assessed by real-time PCR, Western blot analysis, and immunofluorescence analysis and was increased in lupus mice. In addition, almost all changes were reversed by STF083010 treatment. However, the expression of XBP1s in the kidneys did not change when mice were exposed to pristane and STF083010. Taken together, these findings suggest that expression of XBP1s in B cells plays key roles in SLE and LN development. Blockade of the XBP1s pathway may be a potential strategy for SLE and LN treatment.


1998 ◽  
Vol 187 (8) ◽  
pp. 1343-1348 ◽  
Author(s):  
Hirofumi Nishizumi ◽  
Keisuke Horikawa ◽  
Irena Mlinaric-Rascan ◽  
Tadashi Yamamoto

B cells from young lyn−/− mice are hyperresponsive to anti-IgM–induced proliferation, suggesting involvement of Lyn in negative regulation of B cell antigen receptor (BCR)-mediated signaling. Here we show that tyrosine phosphorylation of FcγRIIB and CD22 coreceptors, which are important for feedback suppression of BCR-induced signaling, was severely impaired in lyn−/− B cells upon their coligation with the BCR. Hypophosphorylation on tyrosine residues of these molecules resulted in failure of recruiting the tyrosine phosphatase SHP-1 and inositol phosphatase SHIP, SH2-containing potent inhibitors of BCR-induced B cell activation, to the coreceptors. Consequently, lyn−/− B cells exhibited defects in suppressing BCR-induced Ca2+ influx and proliferation. Thus, Lyn is critically important in tyrosine phosphorylation of the coreceptors, which is required for feedback suppression of B cell activation.


1975 ◽  
Vol 141 (3) ◽  
pp. 647-663 ◽  
Author(s):  
G Möller ◽  
A Coutinho

Attempts were made to identify the non-Ig lymphocyte receptor responsible for B-cell induction by antigen and polyclonal B-cell activators (PBA). As a first step, the role of C'3 and Fc receptors was analyzed. It was shown that complement could be fixed onto B cells to such an extent that the lymphocytes could not bind complement-coated red cells, but this did not result in induction of polyclonal antibody synthesis, nor did it inhibit the lymphocytes response to PBA. However, the C'3 receptros possessed a passive focussing role in the induction of polyclonal antibody responses. Thus, PBA that had fixed complement activated polyclonal responses at lower concentrations than the same substances that had not fixed complement. Most likely the dual binding of PBA molecules to B cells by the PBA and the C'3 receptors caused more PBA molecules to be bound to each cell. However, the focussing function of the C'3 receptors was several orders of magnitude smaller than that of the Ig receptors. Analogous studies were carried out with Fc receptors. Binding of different types of antigen-antibody complexes did not cause activation of polyclonal or specific antibody synthesis, nor did it significantly interfere with induction of antibody synthesis by PBA substances.


2008 ◽  
Vol 205 (12) ◽  
pp. 2755-2761 ◽  
Author(s):  
Vikas A. Gupta ◽  
Michelle L. Hermiston ◽  
Gail Cassafer ◽  
David I. Daikh ◽  
Arthur Weiss

CD45 and Fas regulate tyrosine phosphorylation and apoptotic signaling pathways, respectively. Mutation of an inhibitory wedge motif in CD45 (E613R) results in hyperresponsive thymocytes and B cells on the C57BL/6 background, but no overt autoimmunity, whereas Fas deletion results in a mild autoimmune disease on the same genetic background. In this study, we show that these two mutations cooperate in mice, causing early lethality, autoantibody production, and substantial lymphoproliferation. In double-mutant mice, this phenotype was dependent on both T and B cells. T cell activation required signaling in response to endogenous or commensal antigens, demonstrated by the introduction of a transgenic T cell receptor. Genetic deletion of B cells also prevented T cell activation. Similarly, T cells were necessary for B cell autoantibody production. However, B cells appeared to be intrinsically activated even in the absence of T cells, suggesting that they may drive the phenotype of these mice. These results reveal a requirement for careful control of B cell signaling and cell death in preventing inappropriate lymphocyte activation and autoimmunity.


2000 ◽  
Vol 74 (6) ◽  
pp. 2721-2730 ◽  
Author(s):  
Blossom Damania ◽  
Maryann DeMaria ◽  
Jae U. Jung ◽  
Ronald C. Desrosiers

ABSTRACT Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus that exhibits a considerable degree of similarity to the human Kaposi's sarcoma-associated herpesvirus (KSHV). The R1 protein of RRV is distantly related to the K1 protein of KSHV, and R1, like K1, can contribute to cell growth transformation. In this study we analyzed the ability of the cytoplasmic tail of R1 to function as a signal transducer. The cytoplasmic domain of the R1 protein contains several tyrosine residues whose phosphorylation is induced in cells expressing Syk kinase. Expression of a CD8 chimera protein containing the extracellular and transmembrane domains of CD8 fused to the cytoplasmic domain of R1 mobilized intracellular calcium and induced cellular tyrosine phosphorylation in B cells upon stimulation with anti-CD8 antibody. None of the CD8-R1 cytoplasmic deletion mutants tested were able to mobilize intracellular calcium or to induce tyrosine phosphorylation to a significant extent upon addition of anti-CD8 antibody. Expression of wild-type R1 protein activated nuclear factor of activated T lymphocytes (NFAT) eightfold in B cells in the absence of antibody stimulation; expression of the CD8-R1C chimera strongly induced NFAT activity (60-fold) but only upon the addition of anti-CD8 antibody. We conclude that the cytoplasmic domain of R1 is capable of transducing signals that elicit B-lymphocyte activation events. The signal-inducing properties of R1 appear to be similar to those of K1 but differ in that the required sequences are distributed over a much longer stretch of the cytoplasmic domain (>150 amino acids). In addition, the induction of calcium mobilization was considerably longer in duration and stronger with R1 than with K1.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


Sign in / Sign up

Export Citation Format

Share Document