scholarly journals Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Li ◽  
Fangfang Lang ◽  
Huilin Zhang ◽  
Liangdong Xu ◽  
Yidan Wang ◽  
...  

Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1), cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF)), cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB) to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly.

2020 ◽  
Vol 98 (10) ◽  
pp. 700-707
Author(s):  
Yunpeng Tian ◽  
Wei Lv ◽  
Chengzhi Lu ◽  
Yiyao Jiang ◽  
Xue Yang ◽  
...  

Doxorubicin (DOX) is a highly efficient chemotherapeutic drug limited by its cardiotoxicity. Galectin-3 (Gal-3) overexpression is associated with several cardiovascular diseases. In this study, the in vivo models of DOX-treated rats and the in vitro model of DOX-treated H9C2 cells were used. DOX induced cardiac injury and dysfunction accompanied with the upregulation of Gal-3 at the end of the experiment, while inhibition of Gal-3 with modified citrus pectin (MCP) exhibited a dramatic improvement in cardiac function of the DOX-treated rats, as manifested by increased left ventricular systolic pressure and ±dp/dtmax and decreased left ventricular end-diastolic pressure. The plasma levels of myocardial injury markers such as lactate dehydrogenase, creatine kinase, creatine kinase-MB, and cardiac troponin I were decreased after MCP treatment. In parallel, MCP attenuated myocardial tissue markers of oxidative stress such as hydrogen peroxide and malondialdehyde restored the activities of superoxide dismutase, catalase, and glutathione peroxidase and upregulated antioxidant peroxiredoxin-4 (Prx-4). To further verify the role of Prx-4, it was downregulated by siRNA-mediated knockdown in H9C2 cells. MCP could not reverse DOX-induced oxidative stress in Prx-4-knock-down cells. In conclusion, Gal-3 mediated DOX-induced cardiotoxicity and Gal-3 inhibition attenuated DOX-induced cardiac dysfunction by upregulating the expression of Prx-4 to reduce myocardial oxidative stress.


2021 ◽  
Author(s):  
Hiroshi Yamaguchi ◽  
Hiroyuki Awano ◽  
Tetsushi Yamamoto ◽  
Masafumi Matsuo ◽  
Kazumoto Iijima

Abstract Background: Cardiac troponin I (cTnI), uniquely expressed in the myocardium, is a marker for acute myocardial injury. Its clinical significance in Duchenne and Becker muscular dystrophy (DMD and BMD) and its relation to alpha-actinin-3 (ACTN3) genotype as a genetic modifier of cardiomyopathy are still unknown.Methods and Results: Overall, 529 and 131 serum cTnI values of 127 DMD and 47 BMD patients, respectively, were reviewed. cTnI elevation was generally observed in the second decade of life. Both cTnI levels and the proportion of abnormal cTnI levels were significantly higher in DMD patients than in BMD patients (age range: 1< years ≤10 and 10< years ≤18 and 10< years ≤18, respectively). Decreased left ventricular ejection fraction was observed after cTnI elevation in both populations. cTnI levels by age in DMD patients with ACTN3 null genotype tended to increase highly and early.Conclusions: Myocardial injury indicated by cTnI was more common and severe in DMD patients than in BMD patients. cTnI elevation preceding cardiac dysfunction may represent an early phase of cardiomyopathy progression and may be a biomarker for early detection of cardiomyopathy in DMD and BMD patients. The ACTN3 null genotype may be a risk factor for early myocardial injury.


2014 ◽  
Vol 307 (6) ◽  
pp. H818-H829 ◽  
Author(s):  
Timothy L. Domeier ◽  
Cale J. Roberts ◽  
Anne K. Gibson ◽  
Laurin M. Hanft ◽  
Kerry S. McDonald ◽  
...  

Cardiac dysfunction in the aged heart reflects abnormalities in cardiomyocyte Ca2+ homeostasis including altered Ca2+ cycling through the sarcoplasmic reticulum (SR). The ryanodine receptor antagonist dantrolene exerts antiarrhythmic effects by preventing spontaneous diastolic Ca2+ release from the SR. We tested the hypothesis that dantrolene prevents spontaneous Ca2+ release without altering excitation-contraction coupling in aged myocardium. Left ventricular cardiomyocytes isolated from young (3 to 4 mo) and aged (24–26 mo) C57BL/6 mice were loaded with the Ca2+ indicator fluo-4. Amplitudes of action potential-induced Ca2+ transients at 1-Hz pacing were similar between young and aged mice, yet cell shortening was impaired in aged mice. Isoproterenol (1 μM) increased Ca2+ transient amplitude and cell shortening to identical levels in young and aged; dantrolene (1 μM) had no effect on Ca2+ transients or cell shortening during pacing. Under Ca2+ overload conditions induced with 10 mM extracellular Ca2+ concentration, spontaneous Ca2+ waves were of diminished amplitude and associated with lower SR Ca2+ content in aged versus young mice. Despite no effect in young mice, dantrolene increased SR Ca2+ content and Ca2+ wave amplitude in aged mice. In the presence of isoproterenol following rest from 1-Hz pacing, Ca2+ spark frequency was elevated in aged mice, yet the time to spontaneous Ca2+ wave was similar between young and aged mice; dantrolene decreased Ca2+ spark frequency and prolonged the time to Ca2+ wave onset in aged mice with no effect in young mice. Thus dantrolene attenuates diastolic Ca2+ release in the aged murine heart that may prove useful in preventing cardiac dysfunction.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Li ◽  
Fangfang Lang ◽  
Huilin Zhang ◽  
Liangdong Xu ◽  
Yidan Wang ◽  
...  

Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ahmed Ayuna ◽  
Nik Abidin

Abstract Background Anthracycline-induced cardiotoxicity has been classified based on its onset into acute, early, and late. It may have a significant burden on the quality and quantity of life of those exposed to this class of medication. Currently, there are several ongoing debates on the role of different measures in the primary prevention of cardiotoxicity in cancer survivors. Our article aims to focus on the role of neurohormonal blockers in the primary prevention of anthracycline-induced cardiotoxicity, whether it is acute, early, or late onset. Main body of the abstract PubMed and Google Scholar database were searched for the relevant articles; we reviewed and appraised 15 RCTs, and we found that angiotensin-converting enzyme inhibitors (ACEI) and B-blockers were the most commonly used agents. Angiotensin II receptor blockers (ARBs) and mineralocorticoid receptor antagonists (MRAs) were used in a few other trials. The follow-up period was on the range of 1–156 weeks (mode 26 weeks). Left ventricular ejection fraction (LVEF), left ventricular diameters, and diastolic function were assessed by either echocardiogram or occasionally by cardiac magnetic resonance imaging (MRI). The occurrence of myocardial injury was assessed by troponin I. It was obvious that neurohormonal blockers reduced the occurrence of LVEF and myocardial injury in 14/15 RCTs. Short conclusion Beta-blockers, especially carvedilol and ACEI, especially enalapril, should be considered for the primary prevention of acute- and early-onset cardiotoxicity. ARB and MRA are suitable alternatives when patients are intolerant to ACE-I and B-blockers. We recommend further studies to explore and establish the role of neurohormonal blockers in the primary prevention of the acute-, early-, and late-onset cardiotoxicity.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hao Tang ◽  
Kunhong Xiao ◽  
Lan Mao ◽  
Howard A Rockman ◽  
Douglas A Marchuk

Cardiac Troponin I-interacting kinase (TNNI3K) is a cardiac specific kinase whose biological function remains largely unknown. We have recently shown that TNNI3K expression greatly accelerates cardiac dysfunction in mouse models of cardiomyopathy, indicating an important role in modulating disease progression. To further investigate TNNI3K kinase activity in vivo, we have generated transgenic mice expressing both wild-type and kinase-dead versions of the human TNNI3K protein. Importantly, we show that the increased TNNI3K kinase activity induces mouse cardiac hypertrophy, and the kinase activity is required to accelerate disease progression in a left-ventricular pressure overload model of mouse cardiomyopathy. We demonstrate the clinical relevance of these observations by identifying two potential missense mutations near the kinase activation loop of TNNI3K in idiopathic dilated cardiomyopathy (DCM) human patients. Using an in vitro kinase assay and proteomics analysis, we show that TNNI3K is a dual-function kinase with Tyr and Ser/Thr kinase activity. Using antisera to TNNI3K, we show that TNNI3K protein is located at the sarcomere Z disc. These combined data suggest that TNNI3K mediates cell signaling to modulate cardiac response to stress. The essential role of the kinase activity makes TNNI3K a strong potential pharmaceutical target of kinase inhibitors for heart disease.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Peiyong Zhai ◽  
Junichi Sadoshima

Lats2 is a tumor suppressor and a serine/threonine kinase, acting downstream of mammalian sterile 20 like kinase1 (Mst1), which stimulates apoptosis and inhibits hypertrophy in cardiomyocytes (CM). We investigated the role of Lats2 in mediating myocardial injury after ischemia/reperfusion (IR). Phosphorylation of YAP, an in vivo substrate of Lats2, was increased after 45 minutes ischemia followed by 24 hours reperfusion in control mouse hearts compared with sham, but not in dominant negative (DN) Lats2 transgenic mouse (Tg) hearts, suggesting that Lats2 is activated by IR. The size of myocardial infarction (MI)/area at risk was significantly smaller in Tg mice than in NTg mice (19% and 49%, p<0.01). And there were fewer TUNEL positive cells in Tg than in NTg mice (0.04% and 0.11%, p<0.05). Following 30 min of global ischemia and 60 min of reperfusion in Langendorff perfused heart preparations, left ventricular (LV) systolic pressure (100 vs 71mmHg, p<0.05) and LV developed pressure (79 vs 47 mmHg, p<0.05) were significantly greater in Tg than in NTg mice, indicating that suppression of Lats2 induces better functional recovery after IR. Oxidative stress, as evaluated by 8-OHdG staining, was attenuated in Tg mice. In cultured CMs, DN-Lats2 significantly decreased H 2 O 2 -induced cell death. Overexpression of Lats2 significantly downregulated (51% and 75%, p<0.05), whereas that of DN-Last2 upregulated (100 and 70%, p<0.05), MnSOD and catalase, suggesting that Lats2 negatively regulates expression of antioxidants. Reporter gene assays showed that overexpression of Lats2 significantly inhibits (−70%), whereas knocking down Lats2 by sh-Lats2 increases (+60%), FoxO3-mediated transcriptional activity. Overexpression of Lats2 in CMs inhibited FoxO3 expression, whereas that of DN-Lats2 significantly inhibited FoxO3 downregulation after IR in vivo, suggesting that Lats2 negatively regulates FoxO3 protein expression, which may lead to the downregulation of MnSOD and catalase. Taken together, these results suggest that endogenous Lats2 plays an important role in mediating myocardial injury in response to IR, In part through downregulation of FoxO3 and consequent downregulation of antioxidants and increased oxidative stress in the heart.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masanori Asakura ◽  
...  

Background; Several studies have shown that metformin activates AMP-activated protein kinase (AMPK), which mediates potent cardioprotection against ischemia-reperfusion injury. AMPK is also activated in experimental failing myocardium, suggesting that activation of AMPK is beneficial for the pathophysiology of heart failure. We investigated whether metformin prevents oxidative stress-induced cell death in rat cardiomyocytes and attenuates the progression of heart failure in dogs. Methods and Results; The treatment with metformin (10 μmol/L) protected the rat cultured cardiomyocytes against cell death due to H 2 O 2 exposure (50 μmol/L) as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), TUNEL staining, and flow cytometry. These effects were blunted by an AMPK inhibitor, compound-C (20 μmol/L), suggesting that the activation of AMPK decreased the extent of apoptosis-induced cell death due to H 2 O 2 exposure. Continuous rapid ventricular pacing (230/min for 4 weeks) in dogs caused heart failure and the treatment with metformin (100 mg/kg/day PO, n=8) decreased left ventricular (LV) end-diastolic dimension (32.8±0.4 vs. 36.5±1.0 mm, p< 0.01) and pressure (11.8±1.1 vs. 22±0.9 mmHg, p< 0.01), and increased LV fractional shortening (18.6±1.8 vs. 9.6±0.7 %, p< 0.01) along with enhanced phosphorylation of AMPK and the decreased the number of TUNEL-positive cells of the LV myocardium compared with the vehicle group (n=8). Interestingly, metformin increased the protein and mRNA levels of endothelial nitric oxide synthase of the LV myocardium and plasma nitric oxide levels. Metformin improved the plasma insulin resistance without increased myocardial GLUT-4 translocation. Furthermore, the subcutaneous administration of AICAR (50 mg/kg/every other day), another AMPK activator mediated the equivalent effects to metformin, strengthening the pivotal role of AMPK in reduction of apoptosis and prevention of heart failure. Conclusions; Activation of myocardial AMPK attenuated the oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with eNOS activation. Thus, metformin or AICAR may be applicable as a novel therapy for heart failure.


2019 ◽  
Vol 47 (10) ◽  
pp. 5229-5238
Author(s):  
Guo-dong Chen ◽  
Heng Fan ◽  
Jian-Hua Zhu

Objective To explore the protective effects and mechanisms of salidroside on myocardial injury induced by heat stroke (HS) in mice. Methods We pretreated mice with salidroside for 1 week and then established an HS model by exposure to 41.2°C for 1 hour. We then examined the effects of salidroside on survival. We also assessed the severity of cardiac injury by pathology, and analyzed changes in levels of myocardial injury markers, inflammatory cytokines, and oxidative stress. Results Salidroside pretreatment significantly reduced HS-induced mortality and improved thermoregulatory function. Salidroside also provided significant protection against HS-induced myocardial damage, and decreased the expression levels of cardiac troponin I, creatine kinase-MB, and lactate dehydrogenase. Moreover, salidroside attenuated HS-induced changes in the inflammation markers tumor necrosis factor-α, interleukin (IL)-6, and IL-10, and down-regulated the oxidative stress response indicated by thiobarbituric acid reactant substances, malondialdehyde, reduced glutathione, and superoxide dismutase. Conclusions Salidroside pretreatment protected against HS-induced myocardial damage, potentially via a mechanism involving anti-inflammatory and anti-oxidative effects.


2010 ◽  
Vol 28 (25) ◽  
pp. 3910-3916 ◽  
Author(s):  
Daniela Cardinale ◽  
Alessandro Colombo ◽  
Rosalba Torrisi ◽  
Maria T. Sandri ◽  
Maurizio Civelli ◽  
...  

Purpose Treatment of breast cancer with trastuzumab is complicated by cardiotoxicity in up to 34% of the patients. In most patients, trastuzumab-induced cardiotoxicity (TIC) is reversible: left ventricular ejection fraction (LVEF) improves after trastuzumab withdrawal and with, or sometimes without, initiation of heart failure (HF) therapy. The reversibility of TIC, however, is not foreseeable, and identification of patients at risk and of those who will not recover from cardiac dysfunction is crucial. The usefulness of troponin I (TNI) in the identification of patients at risk for TIC and in the prediction of LVEF recovery has never been investigated. Patients and Methods In total, 251 women were enrolled. TNI was measured before and after each trastuzumab cycle. LVEF was evaluated at baseline, every 3 months during trastuzumab therapy, and every 6 months afterward. In case of TIC, trastuzumab was discontinued, and HF treatment with enalapril and carvedilol was initiated. TIC was defined as LVEF decrease of > 10 units and below 50%. Recovery from TIC was defined as LVEF increase above 50%. Results TIC occurred in 42 patients (17%) and was more frequent in patients with TNI elevation (TNI+; 62% v 5%; P < .001). Twenty-five patients (60%) recovered from TIC. LVEF recovery occurred less frequently in TNI+ patients (35% v 100%; P < .001). At multivariate analysis, TNI+ was the only independent predictor of TIC (hazard ratio [HR], 22.9; 95% CI, 11.6 to 45.5; P < .001) and of lack of LVEF recovery (HR, 2.88; 95% CI,1.78 to 4.65; P < .001). Conclusion TNI+ identifies trastuzumab-treated patients who are at risk for cardiotoxicity and are unlikely to recover from cardiac dysfunction despite HF therapy.


Sign in / Sign up

Export Citation Format

Share Document