scholarly journals miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit+Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Wenwen Deng ◽  
Yan Wang ◽  
Xianping Long ◽  
Ranzun Zhao ◽  
Zhenglong Wang ◽  
...  

The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptosis in c-kit+CSC and estimated the contribution of PTEN/PI3K/Akt signaling to this oxidative circumstance. miR-21 mimics efficiently reduced H2O2-induced apoptosis in c-kit+CSC, as evidenced by the downregulation of the proapoptosis proteins caspase-3 and Bax and upregulation of the antiapoptotic Bcl-2. In addition, the gain of function of miR-21 in c-kit+CSC downregulated the protein level of PTEN although its mRNA level changed slightly; in the meantime, miR-21 overexpression also increased phospho-Akt (p-Akt). The antiapoptotic effects of miR-21 were comparable with Phen (bpV), the selective inhibitor of PTEN, while miR-21 inhibitor or PI3K’s inhibitor LY294002 efficiently attenuated the antiapoptotic effect of miR-21. Taken together, these results indicate that the anti-H2O2-induced apoptosis effect of miR-21 in c-kit+CSC is contributed by PTEN/PI3K/Akt signaling. miR-21 could be a potential molecule to facilitate the c-kit+CSC therapy in ischemic myocardium.

2018 ◽  
Vol 50 (5) ◽  
pp. 1804-1814 ◽  
Author(s):  
Ni Wang ◽  
Xiaohua Liang ◽  
Weijian Yu ◽  
Shihang Zhou ◽  
Meiyun  Fang

Background/Aims: MiR-19b has been reported to be involved in several malignancies, but its role in multiple myeloma (MM) is still unknown. The objective of this study was to explore the biological mechanism of miR-19b in the progression of MM. Methods: First, we performed real-time polymerase chain reaction (PCR) and Western blot to study the expression of miR-19b, tuberous sclerosis 1 (TSC1), and caspase-3 in different groups. MTT assay was performed to explore the effect of miR-19b on survival and apoptosis of cancer stem cells (CSCs). Computation analysis and luciferase assay were utilized to confirm the interaction between miR-19b and TSC1. Results: A total of 38 participants comprising 20 subjects with MM and 18 healthy subjects as normal controls were enrolled in our study. Real-time PCR showed dramatic upregulation of miR-19b, but TSC1 was evidently suppressed in the MM group. MiR-19b overexpression substantially promoted clonogenicity and cell viability, and further inhibited apoptosis of CSCs in vitro. Furthermore, miR-19b overexpression downregulated the expression of caspase-3, which induced apoptosis. Using in silico analysis, we identified that TSC1 might be a direct downstream target of miR-19b, and this was further confirmed by luciferase assay showing that miR-19b apparently reduced the luciferase activity of wild-type TSC1 3´-UTR, but not that of mutant TSC1 3´-UTR. There was also evident decrease in TSC1 mRNA and protein in CSCs following introduction of miR-19b. Interestingly, reintroduction of TSC1 abolished the miR-19b-induced proliferation promotion and apoptosis inhibition in CSCs. Conclusion: These findings collectively suggest that miR-19b promotes cell survival and suppresses apoptosis of MM CSCs via targeting TSC1 directly, indicating that miR-19b may serve as a potential and novel therapeutic target of MM based on miRNA expression.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58883 ◽  
Author(s):  
Jingjin Liu ◽  
Yongshun Wang ◽  
Wenjuan Du ◽  
Wenhua Liu ◽  
Fang Liu ◽  
...  

2021 ◽  
Vol 14 (5) ◽  
pp. 444
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

Hexarelin, a synthetic hexapeptide, exerts cyto-protective effects at the mitochondrial level in cardiac and skeletal muscles, both in vitro and in vivo, may also have important neuroprotective bioactivities. This study examined the inhibitory effects of hexarelin on hydrogen peroxide (H2O2)-induced apoptosis in Neuro-2A cells. Neuro-2A cells were treated for 24 h with various concentrations of H2O2 or with the combination of H2O2 and hexarelin following which cell viability and nitrite (NO2−) release were measured. Cell morphology was also documented throughout and changes arising were quantified using Image J skeleton and fractal analysis procedures. Apoptotic responses were evaluated by Real-Time PCR (caspase-3, caspase-7, Bax, and Bcl-2 mRNA levels) and Western Blot (cleaved caspase-3, cleaved caspase-7, MAPK, and Akt). Our results indicate that hexarelin effectively antagonized H2O2-induced damage to Neuro-2A cells thereby (i) improving cell viability, (ii) reducing NO2− release and (iii) restoring normal morphologies. Hexarelin treatment also reduced mRNA levels of caspase-3 and its activation, and modulated mRNA levels of the BCL-2 family. Moreover, hexarelin inhibited MAPKs phosphorylation and increased p-Akt protein expression. In conclusion, our results demonstrate neuroprotective and anti-apoptotic effects of hexarelin, suggesting that new analogues could be developed for their neuroprotective effects.


2020 ◽  
Author(s):  
Han-You Wu ◽  
Xiang-Cheng Zhang ◽  
Ye Cao ◽  
Kai Yan ◽  
Jing-Yuan Li ◽  
...  

Abstract Background: Human umbilical cord mesenchymal stem cells (hUCMSCs) transplantation has been proposed as a promising therapeutic approach for treating acute liver failure (ALF), but its application is limited by immune rejection and tumor formation. Exosomes contain various bioactive cargos including mRNA, microRNA, and protein that can alter the cellular enviroment to enhance tissue repair. However, the exact effects of hUCMSCs derived exosomes (hUCMSC-Exo) on the healing of ALF and their potential mechanisms are not explored.Methods: In vivo, mouse model of ALF were set up through a single intraperitoneal injection of acetaminophen (APAP, 380 mg/kg). In vitro, human hepatocyte cells LO2 were treated with APAP (5 mM). Then APAP-induced ALF mice and APAP-injured LO2 cells were treated with hUCMSC-Exo. Finally, the effects and the mechanisms were estimated.Results: We found that a single tail vein administration of hucMSC-Exo effectively enhanced the survival rate, inhibited apoptosis in hepatocytes, and improved liver function in APAP-induced mouse model of ALF. Furthermore, the deletion of glutathione (GSH) and superoxide dismutase (SOD), generation of malondialdehyde (MDA), and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP were also inhibited by hucMSC-Exo, indicating that hucMSC-Exo inhibited APAP-induced apoptosis of hepatocytes by reducing oxidative stress. Moreover, hucMSC-Exo significantly down-regulated the levels of inflammatory cytokines IL-6, IL-1β, and TNF-α in APAP-treated livers. Western blot showed that hucMSC-Exo significantly promoted the activation of ERK1/2 and IGF-1R/PI3K/AKT signaling pathways in APAP-injured LO2 cells, resulting in the inhibition of apoptosis of LO2 cells. Importantly, PI3K inhibitor LY294002 and ERK1/2 inhibitor PD98059 could reverse the function of hucMSC-Exo on APAP-injured LO2 cells in some extent. Conclusions: Our results suggest that hucMSC-Exo offer antioxidant hepatoprotection against APAP in vitro and in vivo by inhibitiing oxidative stress-induced apoptosis via upregulation of ERK1/2 and PI3K/AKT signaling pathways, suggesting that administration of hucMSC-Exo may be an alternative approach for the treatment of ALF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luqian Liu ◽  
Meijuan Yan ◽  
Rui Yang ◽  
Xuqing Qin ◽  
Ling Chen ◽  
...  

Cardiomyocyte apoptosis is a crucial factor leading to myocardial dysfunction. Adiponectin (APN) has a cardiomyocyte-protective impact. Studies have shown that the connexin43 (Cx43) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathways play an important role in the heart, but whether APN plays a protective role by regulating these pathways is unclear. Our study aimed to confirm whether APN protects against lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis and to explore whether it plays an important role through regulating the Cx43 and PI3K/AKT signaling pathways. In addition, our research aimed to explore the relationship between the Cx43 and PI3K/AKT signaling pathways. In vitro experiments: Before H9c2 cells were treated with LPS for 24 h, they were pre-treated with APN for 2 h. The cytotoxic effect of APN on H9c2 cells was evaluated by a CCK-8 assay. The protein levels of Bax, Bcl2, cleaved caspase-3, cleaved caspase-9, Cx43, PI3K, p-PI3K, AKT and p-AKT were evaluated by Western blot analysis, and the apoptosis rate was evaluated by flow cytometry. APN attenuated the cytotoxicity induced by LPS. LPS upregulated Bax, cleaved caspase-3 and cleaved caspase-9 and downregulated Bcl2 in H9c2 cells; however, these effects were attenuated by APN. In addition, LPS upregulated Cx43 expression, and APN downregulated Cx43 expression and activated the PI3K/AKT signaling pathway. LPS induced apoptosis and inhibited PI3K/AKT signaling pathway in H9c2 cells, and these effects were attenuated by Gap26 (a Cx43 inhibitor). Moreover, the preservation of APN expression was reversed by LY294002 (a PI3K/AKT signaling pathway inhibitor). In vivo experiments: In C57BL/6J mice, a sepsis model was established by intraperitoneal injection of LPS, and APN was injected into enterocoelia. The protein levels of Bax, Bcl2, cleaved caspase-3, and Cx43 were evaluated by Western blot analysis, and immunohistochemistry was used to detect Cx43 expression and localization in myocardial tissue. LPS upregulated Bax and cleaved caspase-3 and downregulated Bcl2 in sepsis; however, these effects were attenuated by APN. In addition, the expression of Cx43 was upregulated in septic myocardial tissue, and APN downregulated Cx43 expression in septic myocardial tissue. In conclusion, both in vitro and in vivo, the data demonstrated that APN can protect against LPS-induced apoptosis during sepsis by modifying the Cx43 and PI3K/AKT signaling pathways.


2013 ◽  
Vol 114 (10) ◽  
pp. 2346-2355 ◽  
Author(s):  
Fu-Wu Wang ◽  
Zhen Wang ◽  
Yan-Min Zhang ◽  
Zhao-Xia Du ◽  
Xiao-Li Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document