scholarly journals Impact of Block Length and Temperature over Self-Assembling Behavior of Block Copolymers

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Samia A. Kosa ◽  
Laila M. Al-Harbi ◽  
Musa Kaleem Baloch ◽  
Irfan Ullah ◽  
Elsayed H. El-Mossalamy

Self-assembling behavior of block copolymers having water-soluble portion as one of the blocks plays key role in the properties and applications of the copolymers. Therefore, we have synthesized block copolymers of different block length and investigated their self-assembling behavior with reference to concentration and temperature using surface tension and conductance measurement techniques. The results obtained through both techniques concluded that critical micelles concentration (CMC) was decreased from 0.100 to 0.078 g/dL with the increase in length of water insoluble block and 0.100 to 0.068 g/dL for the increased temperature.ΔGmicwas also decreased with the increase in temperature of the system, concluding that the micellization process was encouraged with the increase in temperature and block length. However,ΔHmicvalues were highest for short block length copolymer. The surface excess concentration obtained from surface tension data concluded that it was highest for short block length and vice versa and was increased with the increase in temperature of the system. However, the minimum area per molecule was largest for highest molecular weight copolymers or having longest water insoluble block and decreases with the increase in temperature.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4313
Author(s):  
Bronisław Jańczuk ◽  
Katarzyna Szymczyk ◽  
Anna Zdziennicka

Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension.


2011 ◽  
Vol 32 (6) ◽  
pp. 1210-1233 ◽  
Author(s):  
Tomasz Gancarz ◽  
Zbigniew Moser ◽  
Władysław Gąsior ◽  
Janusz Pstruś ◽  
Hani Henein

2021 ◽  
Author(s):  
Tingyu He ◽  
Atsushi Narumi ◽  
Yanqiu Wang ◽  
Liang Xu ◽  
Shin-ichiro Sato ◽  
...  

A synthetic method for a series of poly(glycidol) (PG)-based amphiphilic block copolymers is presented with an emphasis on the catalyst switch method from an organic superbase (t-Bu-P4) to another with...


2019 ◽  
Vol 233 (8) ◽  
pp. 1109-1127
Author(s):  
Biraj Kumar Barman ◽  
Kanak Roy ◽  
Mahendra Nath Roy

Abstract Structurally different Molecules namely Pentoxifylline and Pralidoxim were chosen along with α-cyclodextrin and β-cyclodextrin to study host-guest inclusion phenomena. The formations of host guest inclusion complexes were confirmed by studying 1H-NMR spectra, FT-IR spectra, apparent molar volume and viscosity co-efficient. The stabilities of inclusion complexes were compared calculating the binding constant from UV-VIS spectroscopic study. The 1:1 stoichiometry of the inclusion complexes were also determined by analysing the Jobs plot and surface tension data. The values for Gibbs’ free energy were found negative for both the processes. Based on all the above experiments the inclusion processes were found feasible for both the compounds. These types of inclusion complexes are of high interest in the field of research and industry as these are used as drug delivery systems.


2016 ◽  
Author(s):  
Jordan E. Krechmer ◽  
Michael Groessl ◽  
Xuan Zhang ◽  
Heikki Junninen ◽  
Paola Massoli ◽  
...  

Abstract. Measurement techniques that provide molecular-level information are needed to elucidate the multi-phase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom build nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-dimensional IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisional dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.


Sign in / Sign up

Export Citation Format

Share Document