scholarly journals Vitis vinifera Assisted Silver Nanoparticles with Antibacterial and Antiproliferative Activity against Ehrlich Ascites Carcinoma Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
A. K. M. Asaduzzaman ◽  
Byung-Soo Chun ◽  
Syed Rashel Kabir

Vitis vinifera extract assisted silver nanoparticles (AgNPs) were biosynthesized that was confirmed primarily by color change and a sharp plasmon absorption band was found at 449 nm. Biosynthesized AgNPs shape was spherical and the particle size of 17 nm in average was confirmed by transmission electron microscopy (TEM) images. Functional groups of AgNPs were identified by Fourier transform infrared spectroscopy (FTIR). Streptococcus aureus was the most sensitive bacteria towards the assisted V. vinifera AgNPs as their growth was 90% inhibited at 100 μg/mL concentration. That was also confirmed by the zone of inhibition study. Up to 96 h, no biofilm was observed for K. pneumoniae at 40 μg/mL of AgNPs. Although AgNPs showed a mild toxicity against brine shrimp nauplii, it showed a remarkable level of antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells.

Author(s):  
Shaikh Shohidul Islam ◽  
Md. Rezaul Karim ◽  
A. K. M. Asaduzzaman ◽  
A. H. M. Khurshid Alam ◽  
Zahid Hayat Mahmud ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


1965 ◽  
Vol 43 (2) ◽  
pp. 209-224 ◽  
Author(s):  
B. I. Uppin ◽  
P. G. Scholefield

Studies have been made of the effects of metabolic inhibitors on the oxidation and incorporation of radioactivity into nucleotides of glucose labelled in the 1, 2, and 6 positions. The results indicate that in Ehrlich ascites carcinoma cells the predominant oxidative pathway is the hexosemonophosphate shunt. Investigation of the time courses of oxidation of the labelled glucose molecules confirms this conclusion. The pattern of incorporation of radioactivity initially suggests that nucleotide ribose is not formed via this pathway. However, it is shown that the coupling of an active transketolase system with the other enzymes of the hexosemonophosphate shunt provides a sufficient explanation of all the experimental observations. The conclusion is reached that pentose is formed by oxidation of glucose through the shunt but that the labelling pattern is largely established as the result of the exchange reaction catalyzed by transketolase.


1961 ◽  
Vol 39 (11) ◽  
pp. 1717-1735 ◽  
Author(s):  
P. G. Scholefield

The cumulative entry of amino acids into Ehrlich ascites carcinoma cells is due to the presence of active transport systems, each with its own specific range of substrates. Several amino acids and amino acid analogues may have an affinity for the same transport system and thus may inhibit transport of other amino acids by acting as competitive inhibitors or competitive substrates. Loss of methionine from ascites cells takes place by a diffusion process which obeys Fick's law. Leucine accumulation by ascites cells is small and is increased on addition of certain other amino acids. The increase is not due to inhibition of leucine oxidation as increase in the rate of production of radioactive carbon dioxide from labeled leucine also occurs. Kinetic aspects of these results are discussed.


Sign in / Sign up

Export Citation Format

Share Document