scholarly journals Polarization Sensitive Reflection and Dielectric Spectra in GaSe Thin Films

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hazem K. Khanfar ◽  
Atef A. Qasrawi

The light polarization effects on the optical reflective and dielectric spectra of GaSe thin films are studied in the incident light wavelength range of 200–1100 nm. In this range of measurement, the angle of incidence (θi) of light was varied between 30° and 80°. In addition, at θi of 30° the light polarizing angle (δ) was altered in the range of 0–90°. Regardless of the value of λ, for all θi≻65°, the total reflectance sharply decreased with increasing θi. In addition, when θi is fixed at 30° and δ was varied, the amplitudes ratio of the polarized waves exhibits a resonance-antiresonance phenomenon at a wavelength that coincides with the film’s thickness (800 nm). This behavior was assigned to the coupled interference between incident and reflected waves and to the strong absorption effects. Two main resonance peaks are observed as response to s-polarized and normal incident beam: one is at ~540 (556 nm) and the other at ~420 THz (714 nm). The dielectric constant of the GaSe films exhibits anisotropic characteristics that nominate it for use as multipurpose optoelectronic devices.

2014 ◽  
Vol 1666 ◽  
Author(s):  
Juan A. Badán ◽  
Ricardo E. Marotti ◽  
Enrique A. Dalchiele ◽  
Daniel Ariosa ◽  
Francisco Martín ◽  
...  

ABSTRACTOptical properties of Si nanowire arrays (SiNWs) prepared on p-doped Si(111) and Si(100) substrates are studied. The SiNWs were synthesized by self-assembly electroless metal deposition nanoelectrochemistry in an ionic silver HF solution through selective etching. Total reflectance (Rt) and total diffuse reflectance (Rdt) of SiNWs change drastically in comparison to polished Si. To understand these changes diffuse reflectance (Rd) with polarized incident light was studied. For samples prepared on Si(111), the wavelength integrated Rd (wIRd) shows maxima at certain angle of incidence θ and it does not depend on light polarization. Moreover, Rdt of SiNWs prepared on Si(111) can be modeled as an ensemble of diffuse reflectors. For samples prepared on Si(100) wIRd increases with θ, being greater when the light electric field is parallel to the plane of incidence. Also, Rd spectra show structures due to interference effects. For these reasons SiNWs prepared on Si(100) can be considered as a thin film whose refractive index depends on light polarization.


Author(s):  
David C. Joy

In a crystalline solid the regular arrangement of the lattice structure influences the interaction of the incident beam with the specimen, leading to changes in both the transmitted and backscattered signals when the angle of incidence of the beam to the specimen is changed. For the simplest case the electron flux inside the specimen can be visualized as the sum of two, standing wave distributions of electrons (Fig. 1). Bloch wave 1 is concentrated mainly between the atom rows and so only interacts weakly with them. It is therefore transmitted well and backscattered weakly. Bloch wave 2 is concentrated on the line of atom centers and is therefore transmitted poorly and backscattered strongly. The ratio of the excitation of wave 1 to wave 2 varies with the angle between the incident beam and the crystal structure.


2015 ◽  
Vol 48 (6) ◽  
pp. 1927-1934 ◽  
Author(s):  
Zbigniew Mitura ◽  
Sergei L. Dudarev

Oscillations of reflection high-energy electron diffraction (RHEED) intensities are computed using dynamical diffraction theory. The phase of the oscillations is determined using two different approaches. In the first, direct, approach, the phase is determined by identifying the time needed to reach the second oscillation minimum. In the second approach, the phase is found using harmonic analysis. The two approaches are tested by applying them to oscillations simulated using dynamical diffraction theory. The phase of RHEED oscillations observed experimentally is also analysed. Experimental data on the variation of the phase as a function of the glancing angle of incidence, derived using the direct method, are compared with the values computed using both the direct and harmonic methods. For incident-beam azimuths corresponding to low-symmetry directions, both approaches produce similar results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Neng-Fu Shih ◽  
Jin-Zhou Chen ◽  
Yeu-Long Jiang

DC power and RF power were introduced into the magnetic controlled sputtering system simultaneously to deposit AZO films in order to get an acceptable deposition rate with high quality transparency conducting thin film. The resistivity decreases with the RF power for the as-deposited samples. The resistivity of 6 × 10−4 Ω-cm and 3.5–4.5 × 10−4 Ω-cm is obtained for the as-deposited sample, and for all annealed samples, respectively. The transmittance of the AZO films with higher substrate temperature is generally above 80% for the incident light wavelength within 400–800 nm. The transmittance of the as-deposited samples reveals a clear blue shift phenomenon. The AZO films present (002) oriented preference as can be seen from the X-ray diffraction curves. All AZO films reveal compressive stress. The annealing process improves the electrical property of AZO films. A significant blue shift phenomenon has been found, which may have a great application for electrode in solar cell.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012174
Author(s):  
E S Kozlova ◽  
V V Kotlyar

Abstract In this paper, the design of a plasmonic lens in gold and silver thin films for focusing the light with radial polarization is presented. Using the finite difference time domain method the optimal parameters of the plasmonic lens design are found. It was shown that the silver plasmonic lens produces a tight focal spot with a full width at half maximum of 0.38 of the incident light wavelength.


Author(s):  
David Blow

In Chapter 4 many two-dimensional examples were shown, in which a diffraction pattern represents the Fourier transform of the scattering object. When a diffracting object is three-dimensional, a new effect arises. In diffraction by a repetitive object, rays are scattered in many directions. Each unit of the lattice scatters, but a diffracted beam arises only if the scattered rays from each unit are all in phase. Otherwise the scattering from one unit is cancelled out by another. In two dimensions, there is always a direction where the scattered rays are in phase for any order of diffraction (just as shown for a one-dimensional scatterer in Fig. 4.1). In three dimensions, it is only possible for all the points of a lattice to scatter in phase if the crystal is correctly oriented in the incident beam. The amplitudes and phases of all the scattered beams from a three-dimensional crystal still provide the Fourier transform of the three-dimensional structure. But when a crystal is at a particular angular orientation to the X-ray beam, the scattering of a monochromatic beam provides only a tiny sample of the total Fourier transform of its structure. In the next section, we are going to find what is needed to allow a diffracted beam to be generated. We shall follow a treatment invented by Lawrence Bragg in 1913. Max von Laue, who discovered X-ray diffraction in 1912, used a different scheme of analysis; and Paul Ewald introduced a new way of looking at it in 1921. These three methods are referred to as the Laue equations, Bragg’s law and the Ewald construction, and they give identical results. All three are described in many crystallographic text books. Bragg’s method is straightforward, understandable, and suffices for present needs. I had heard J.J. Thomson lecture about…X-rays as very short pulses of radiation. I worked out that such pulses…should be reflected at any angle of incidence by the sheets of atoms in the crystal as if these sheets were mirrors.…It remained to explain why certain of the atomic mirrors in the zinc blende [ZnS] crystal reflected more powerfully than others.


1970 ◽  
Vol 25 (11) ◽  
pp. 1567-1578 ◽  
Author(s):  
Max G. Lagally

The intensity of the (00) beam of a (111) surface of Ag has been measured with a Faraday cage as a function of the energy of the incident beam (10 < E < 280 eV), the grazing angle of incidence (46.5° < φ < 83.5°), two azimuths differing by 180°, and the temperature. The I vs E curves, when compared with data for Ag ( 111 ) of other workers who have used different methods of surface preparation, show good agreement in the structure over the whole range of incident angles, indicating that LEED is not strongly sensitive to surface condition. The I vs E curves for the two azimuths are identical, a necessary result of the reciprocity theorem. For comparison with the I vs E structure, a complete 3-beam geometric model is used. This differs from a simple Ewald construction in that it considers also the Bragg conditions between intermediate beams and the final beam. It also requires that there be no difference in the effect of intermediate forward and backward scattered beams. It is shown that the number of possible beams is much too large even at low energies to make positive identification of any structure in the I vs E curves. A comparison with a rigorous multiple-scattering theory yields agreement in the number and position of peaks, but not in heights and widths of peaks. The possibility of comparison of absolute intensities in theory and experiment is investigated and an attempt is made to remove the major differences. Intensity vs temperature measurements are made at closely spaced energies in order to extract the rigid-lattice scattering. Correction of this intensity for surface plasma losses leads finally to maximum scattered intensities of 2% at 100 eV, 10% at 60 eV, and up to 40% at energies below 20 eV.


1994 ◽  
Vol 01 (02n03) ◽  
pp. 319-334 ◽  
Author(s):  
K. HEINZ ◽  
H. WEDLER

At low temperatures many adsorbates arrange in lattice gas disorder on crystalline substrates. In a low energy electron diffraction (LEED) experiment this leads to diffuse intensities super-imposed on the sharp spots caused by the substrate. For the disordered adsorption system Ni(001)/K, we present two-dimensional intensity distributions as function of the electron energy and angle of incidence. They can be measured very fast (20 s per frame) and reliably using an automatic video based data acquisition technique. We show that diffuse intensity spectra DI(E) taken as function of energy for fixed surface parallel electron momentum transfer carry the information about the local adsorption structure. This is equivalent to conventional I(E) spectra taken for sharp spots. In the light of recent proposals it is shown that the diffuse single energy intensity pattern is not a hologram of the local structure because e.g. the reference wave is ill defined. However, the diffraction processes disturbing the pure reference wave cancel when the intensities of different energies are suitably averaged. It is demonstrated that the holographic reconstruction of real space information from such scanned energy data leads to reliable and well resolved atomic images. Full widths at half-maximum of such atomic images are not greater than 1 Å. Substrate atoms behind the reference atom in direction of the incident beam are imaged best. So, image reconstructions for different beam directions produce a full and high quality three-dimensional image of the local adsorption structure.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Robert C. Cammarata ◽  
John C. Bilello ◽  
A. Lindsay Greer ◽  
Karl Sieradzki ◽  
Steven M. Yalisove

Almost all thin films deposited on a substrate are in a state of stress. Fifty years ago pioneering work concerning the measurement of thin-film stresses was conducted by Brenner and Senderoff. They electroplated a metal film onto a thin metal substrate strip fixed at one end and measured the deflection of the free end of the substrate with a micrometer. Using a beam-bending analysis, they were able to calculate a residual stress from the measured deflection of the bimetallic film-substrate system. A variety of other, more sensitive methods of measuring the curvature of the surface of a film-substrate system have since been developed using, for example, capacitance measurements and interferometry techniques.When a monochromatic x-ray beam is incident onto a curved single crystal, the diffraction condition is satisfied only for regions of the crystal where the inclination angle with respect to the incident beam exactly matches the Bragg angle. When a parallel beam plane-wave source is used, the diffracted beam from a particular set of (hkl) planes gives rise to a single narrow-contour band. If the crystal is rocked by an angle ω, the contour band will move by a certain distance D. The radius of curvature R of the crystal lattice planes is given bywhere θ is the Bragg angle. Equal rocking angles produce equivalent D values for uniform curvature, or varied D values for nonuniform curvature. Using this procedure, detailed contour maps of the angular displacement field of the crystal can be mapped in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document