scholarly journals Properties and Analysis of Transparency Conducting AZO Films by Using DC Power and RF Power Simultaneous Magnetron Sputtering

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Neng-Fu Shih ◽  
Jin-Zhou Chen ◽  
Yeu-Long Jiang

DC power and RF power were introduced into the magnetic controlled sputtering system simultaneously to deposit AZO films in order to get an acceptable deposition rate with high quality transparency conducting thin film. The resistivity decreases with the RF power for the as-deposited samples. The resistivity of 6 × 10−4 Ω-cm and 3.5–4.5 × 10−4 Ω-cm is obtained for the as-deposited sample, and for all annealed samples, respectively. The transmittance of the AZO films with higher substrate temperature is generally above 80% for the incident light wavelength within 400–800 nm. The transmittance of the as-deposited samples reveals a clear blue shift phenomenon. The AZO films present (002) oriented preference as can be seen from the X-ray diffraction curves. All AZO films reveal compressive stress. The annealing process improves the electrical property of AZO films. A significant blue shift phenomenon has been found, which may have a great application for electrode in solar cell.

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Damian C. Onwudiwe

Pure-phase Cu2−xS (x = 1, 0.2) nanoparticles have been synthesized by the thermal decomposition of copper(II) dithiocarbamate as a single-source precursor in oleylamine as a capping agent. The compositions of the Cu2−xS nanocrystals varied from CuS (covellite) through the mixture of phases (CuS and Cu7.2S4) to Cu9S5 (digenite) by simply varying the temperature of synthesis. The crystallinity and morphology of the copper sulfides were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed pure phases at low (120 °C) and high (220 °C) temperatures and a mixture of phases at intermediate temperatures (150 and 180 °C). Covellite was of a spherical morphology, while digenite was rod shaped. The optical properties of these nanocrystals were characterized by UV−vis–NIR and photoluminescence spectroscopies. Both samples had very similar absorption spectra but distinguishable fluorescence properties and exhibited a blue shift in their band gap energies compared to bulk Cu2−xS. The pure phases were used as catalysts for the photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The results demonstrated that the photocatalytic activity of the digenite phase exhibited higher catalytic degradation of 98.5% compared to the covellite phase, which showed 88% degradation within the 120 min reaction time using 80 mg of the catalysts. The higher degradation efficiency achieved with the digenite phase was attributed to its higher absorption of the visible light compared to covellite.


2013 ◽  
Vol 741 ◽  
pp. 84-89 ◽  
Author(s):  
Sangworn Wantawee ◽  
Pacharee Krongkitsiri ◽  
Tippawan Saipin ◽  
Buagun Samran ◽  
Udom Tipparach

Titania nanotubes (TiO2NTs) working electrodes for hydrogen production by photoelectrocatalytic water splitting were synthesized by means of anodization method. The electrolytes were the mixtures of oxalic acid (H2C2O4), ammonium fluoride (NH4F), and sodium sulphate (VI) (Na2SO4) with different pHs. A constant dc power supply at 20 V was used as anodic voltage. The samples were annealed at 450 °C for 2 hrs. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to characterized TiO2NTs microstructure. TiO2NTs with diameter of 100 nm were obtained when pH 3 electrolyte consisting of 0.08 M oxalic acid, 0.5 wt% NH4F, and 1.0 wt% Na2SO4was used. Without external applied potential, the maximum photocurrent density was 2.8 mA/cm2under illumination of 100 mW/cm2. Hydrogen was generated at an overall photoconversion efficiency of 3.4 %.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012174
Author(s):  
E S Kozlova ◽  
V V Kotlyar

Abstract In this paper, the design of a plasmonic lens in gold and silver thin films for focusing the light with radial polarization is presented. Using the finite difference time domain method the optimal parameters of the plasmonic lens design are found. It was shown that the silver plasmonic lens produces a tight focal spot with a full width at half maximum of 0.38 of the incident light wavelength.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 451-455 ◽  
Author(s):  
H. Lafontaine ◽  
J. F. Currie ◽  
S. Boily ◽  
M. Chaker ◽  
H. Pépin

Tungsten thin films are deposited with a triode sputtering system in order to obtain an absorbing layer for X-ray masks. The mechanical stress is studied as a function of different pressure and RF power conditions during deposition. Rapid thermal annealing at different temperatures and durations is performed in order to produce films under low compressive stress. We observe that the stress changes occur over the time scale of seconds at the annealing temperature and that the corresponding activation energies are low (60 meV). Grain growth in a preferred orientation explains the observed changes in stress. The magnitude in the change of stress is in good agreement with a model proposed by Hoffman et al. relating the stress to grain size and grain boundary dimensions. [Journal translation]


2015 ◽  
Vol 1131 ◽  
pp. 215-220
Author(s):  
Emmanuel Nyambod Timah ◽  
Buagun Samran ◽  
Udom Tipparach

TiO2nanotubes were successfully synthesized by anodization method of Ti foils. The electrolyte was composed of ethylene glycol (EG), ammonium fluoride (0.3%wt NH4F) and de-ionized water (2% vol H2O). A constant DC power supply of 50 V was used during anodization with anodizing times of 1 hour, 2 hours, 4 hours and 6 hours. The samples were annealed at 450 °C for 2 hours. The TiO2nanotubes were studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Structural analysis revealed the presence of pure Ti, and the crystalline anatase phase due to transformation of amorphous TiO2after annealing. The morphology of TiO2nanotube sizes showed an increase in tube diameter with anodizing time from approximately 50 nm to 200 nm. However, the efficiency of dye-sensitized solar cells increased with anodizing times up to a maximum of 5.74 % for anodizing time of 4 hours.


1989 ◽  
Vol 169 ◽  
Author(s):  
F.H. Garzon ◽  
J. G. Beery ◽  
D. K. Wilde ◽  
I. D. Raistrick

AbstractThin films of Y‐Ba‐Cu‐O were produced by RF sputtering of YBa2Cu3O7‐x ceramic targets, using a variety of plasma compositions, RF power levels, and substrate temperatures. Post annealing of these films in oxygen produced superconducting films with Tc values between 40‐60 K, broad transition widths and semiconductor‐like electrical behavior above Tc. Subsequent annealing at 850°C in an inert gas with a residual oxygen partial pressure of ≤10 ppm followed by an oxygen anneal produced high quality thin films: Tc> 85 K with narrow transition widths. The structure and morphology of these films during reduction‐oxidation processing were monitored using X‐ray diffraction and electron microscopy.


2008 ◽  
Vol 55-57 ◽  
pp. 925-928 ◽  
Author(s):  
C. Salawan ◽  
A. Muakngam ◽  
B. Sukbot ◽  
K. Aiempanakit ◽  
Supattanapong Dumrongrattana

In this work, we present the effect of DC power from 100 W to 500 W on the structural and hydrophilic activity of TiO2 films. The TiO2 films were prepared by DC magnetron sputtering on the glass substrate without any external heating. The structure of TiO2 films were analyzed by atomic force microscope and X-ray diffraction. XRD patterns indicated the films were amorphous. The surface roughness and grain size were enlarged by the increasing of the DC power while the substrate temperature was climbed up with the increasing of the DC power. From the point of energetic ion bombardment, it was related with DC power between sputtering processes. The hydrophilic activity of TiO2 films were analyzed by the contact angle meter. The water contact angle decrease with increasing of the DC power.


2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.


1998 ◽  
Vol 537 ◽  
Author(s):  
M.D. McCluskey ◽  
L.T. Romano ◽  
B.S. Krusor ◽  
D. Hofstetter ◽  
D.P. Bour ◽  
...  

AbstractInterdiffusion of In and Ga is observed in InGaN multiple-quantum-well superlattices for annealing temperatures of 1250 to 1400°C. Hydrostatic pressures of up to 15 kbar were applied during the annealing treatments to prevent decomposition of the InGaN and GaN. In as-grown material, x-ray diffraction spectra show InGaN superlattice peaks up to the fourth order. After annealing at 1400°C for 15 min, only the zero-order InGaN peak is observed, a result of compositional disordering of the superlattice. Composition profiles from secondary ion mass spectrometry indicate significant diffusion of Mg from the p-type GaN layer into the quantum well region. This Mg diffusion may lead to an enhancement of superlattice disordering. For annealing temperatures between 1250 and 1300°C, a blue shift of the InGaN spontaneous emission peak is observed, consistent with interdiffusion of In and Ga in the quantum-well region.


1993 ◽  
Vol 324 ◽  
Author(s):  
V. Bellani ◽  
M. Amiotti ◽  
M. Geddo ◽  
G. Guizzetti ◽  
G. Landgren

AbstractWe measured photoreflectance (PR) spectra at different temperatures between 80 and 300 K, and optical absorption (OA) at 3 K on MOVPE grown Inl-xGaxAs nearly lattice-matched to InP. x-ray diffraction measurements gave a lattice mismatch δa/ao = -0.9.10−3 between ternary alloy and InP, corresponding to × = 0.485. We obtained the energy gap dependence on T from PR spectra. The blue shift of the gap was accounted for in terms of compositional difference with respect to the perfectly lattice matched alloy (× = 0.472), and elastic strain; moreover PR and OA showed evidence of the valence bands splitting at k = 0 due to interfacial strain, in fine agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document