scholarly journals Modelling the Rainfall Erosivity of the Rhone Region (Southeastern France) Associated with Climate Variability and Storminess

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Nazzareno Diodato ◽  
Gianni Bellocchi ◽  
Nunzio Romano ◽  
Francesco M. Guadagno

Changes in the spatial and temporal patterns of extreme rainfall may have important effects on the magnitude and timing of rainfall erosivity, which in turn lead to even severe soil degradation phenomena. The Mediterranean belt is characterized by strong climatic variability and specific seasonal features, where dry periods are often interrupted by pulsing storms. Identifying the thresholds associated with extreme rainfall events is among the most important challenges for this region. To discern the spatial patterns of rainfall erosivity hazard in the Rhone region (eastern France), this study establishes thresholds in the power of rainstorms. An indicator Kriging approach was employed for computing probability maps of the annual rainfall erosivity exceeding the threshold of 1800 MJ mm ha−1 h−1, the latter being twice greater than the standard deviation. The interdecadal spatial patterns of hazard were assessed for recent decades (1991–2010) and the precedents ones (1961–1990). Climate fluctuations of rainfall erosivity revealed possible signals of increased storminess hazard across the region in recent times. We also discussed changes in the rainfall erosivity hazard forcing as related to climatic changes in daily rain rate, especially in autumn when the erosivity is likely affected by more intense storminess occurring across the southern part of the Rhone region.

2020 ◽  
Vol 29 (8) ◽  
pp. 702 ◽  
Author(s):  
Elise M. Verhoeven ◽  
Brad R. Murray ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Aaron C. Greenville

Assessing wildfire regimes and their environmental drivers is critical for effective land management and conservation. We used Landsat imagery to describe the wildfire regime of the north-eastern Simpson Desert (Australia) between 1972 and 2014, and to quantify the relationship between wildfire extent and rainfall. Wildfires occurred in 15 of the 42 years, but only 27% of the study region experienced multiple wildfires. A wildfire in 1975 burned 43% of the region and is the largest on record for the area. More recently, a large wildfire in 2011 reburned areas that had not burned since 1975 (47% of the 2011 wildfire), as well as new areas that had no record of wildfires (25% of the 2011 wildfire). The mean minimum wildfire return interval was 27 years, comparable with other spinifex-dominated grasslands, and the mean time since last wildfire was 21 years. Spinifex-dominated vegetation burned most frequently and over the largest area. Extreme annual rainfall events (> 93rd percentile) effectively predicted large wildfires occurring 2 years after those events. Extreme rainfall is predicted to increase in magnitude and frequency across central Australia, which could alter wildfire regimes and have unpredictable and far-reaching effects on ecosystems in the region’s arid landscapes.


Toxins ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 76 ◽  
Author(s):  
Hans Paerl

Toxic planktonic cyanobacterial blooms are a pressing environmental and human health problem. Blooms are expanding globally and threatening sustainability of our aquatic resources. Anthropogenic nutrient enrichment and hydrological modifications, including water diversions and reservoir construction, are major drivers of bloom expansion. Climatic change, i.e., warming, more extreme rainfall events, and droughts, act synergistically with human drivers to exacerbate the problem. Bloom mitigation steps, which are the focus of this review, must consider these dynamic interactive factors in order to be successful in the short- and long-term. Furthermore, these steps must be applicable along the freshwater to marine continuum connecting streams, lakes, rivers, estuarine, and coastal waters. There is an array of physical, chemical, and biological approaches, including flushing, mixing, dredging, application of algaecides, precipitating phosphorus, and selective grazing, that may arrest and reduce bloom intensities in the short-term. However, to ensure long term, sustainable success, targeting reductions of both nitrogen and phosphorus inputs should accompany these approaches along the continuum. Lastly, these strategies should accommodate climatic variability and change, which will likely modulate and alter nutrient-bloom thresholds.


2021 ◽  
Author(s):  
Ibrahim NJOUENWET ◽  
Lucie A. Djiotang Tchotchou ◽  
Brian Odhiambo Ayugi ◽  
Guy Merlin Guenang ◽  
Derbetini A. Vondou ◽  
...  

Abstract The Sudano-Sahelian region of Cameroon is mainly drained by the Benue, Chari and Logone rivers, which are very useful for water resources, especially for irrigation, hydropower generation, and navigation. Long-term changes in mean and extreme rainfall events in the region may be of crucial importance in understanding the impact of climate change. Daily and monthly rainfall data from twenty-five synoptic stations in the study area from 1980 to 2019 and extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) measurements were estimated using the non-parametric Modified Mann-Kendall test and the Sen slope estimator. The precipitation concentration index (PCI), the precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to explore the spatio-temporal variations in the characteristics of rainfall concentrations. An increase in extreme rainfall events was observed, leading to an upward trend in mean annual. Trends in consecutive dry days (CDD) are significantly increasing in most parts of the study area. This could mean that the prevalence of drought risk is higher in the study area. Overall, the increase in annual rainfall could benefit the hydro-power sector, agricultural irrigation, the availability of potable water sources, and food security.


Author(s):  
Yonas Tadesse Alemu

This study presents analysis of Rainfall variability and trends of extreme rainfall events in the Oda Gunufeta -Cherecha -Dechatu watershed, Awash Drainage Basin, Eastern Ethiopia. The study employed the coefficient of variation and the Precipitation Concentration Index (PCI) as statistical descriptors of rainfall variability. The indices at the five stations were subjected to non-parametric Mann-Kendall test to detect the trend over the period between 1985 to 2014. The results of the study revealed that, the watershed experiences moderate inter-annual rainfall variability. The Belg rainfall shows high variability than Kiremt rainfall. Highest Belg & Kiremt rainfall variability is observed in Dire Dawa with coefficient of variation of 46% and 40% respectively. The annual PCI for the watershed in all the stations under investigation during the record periods showed that 100% of the years for which the annual PCI was estimated fell within the irregular precipitation distribution range or high precipitation concentration. The irregular precipitation distribution also extended to all the stations in short rainy season (Belg rainfall) and in two stations in the main rainy season (Kiremt season). With regard to the rainfall trend, the annual rainfall has showed a negative trend in most of the stations for the period 1985-2014. The Mann–Kendall trend test during the Kiremt season shows a positive trend in Dengego, Dire Dawa, Combolcha and Haramaya and the increasing tendency is significant at p<0.1 in Degego, p<0.05 in Dire Dawa, p <0.05 in Combolcha and p <0.01 in Haramaya. The heavy rainfall events, the 90th & 95th percentiles, in all the five stations showed an increasing pattern but except in Combolcha the trends are not statistically significant. This implies that the watershed has been under increased rainfall intensity and this in turn has the potential cause for high risk of flood occurrences.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 964 ◽  
Author(s):  
Mansour Almazroui

The observed records of recent decades show increased economic damage associated with flash flooding in different regions of Saudi Arabia. An increase in extreme rainfall events may cause severe repercussions for the socio-economic sectors of the country. The present study investigated the observed rainfall trends and associated extremes over Saudi Arabia for the 42-year period of 1978–2019. It measured the contribution of extreme events to the total rainfall and calculated the changes to mean and extreme rainfall events over five different climate regions of Saudi Arabia. Rainfall indices were constructed by estimating the extreme characteristics associated with daily rainfall frequency and intensity. The analysis reveals that the annual rainfall is decreasing (5.89 mm decade−1, significant at the 90% level) over Saudi Arabia for the entire analysis period, while it increased in the most recent decade. On a monthly scale, the most significant increase (5.44 mm decade−1) is observed in November and the largest decrease (1.20 mm decade−1) in January. The frequency of intense rainfall events is increasing for the majority of stations over Saudi Arabia, while the frequency of weak events is decreasing. More extreme rainfall events are occurring in the northwest, east, and southwest regions of Saudi Arabia. A daily rainfall of ≥ 26 mm is identified as the threshold for an extreme event. It is found that the contribution of extreme events to the total rainfall amount varies from region to region and season to season. The most considerable contribution (up to 56%) is found in the southern region in June. Regionally, significant contribution comes from the coastal region, where extreme events contribute, on average, 47% of the total rainfall each month from October to February, with the largest (53%) in November. For the entire country, extreme rainfall contributes most (52%) in November and least (20%) in July, while contributions from different stations are in the 8–50% range of the total rainfall.


2020 ◽  
Author(s):  
Sebastian K. Müller ◽  
Russell Glazer ◽  
Erika Coppola

&lt;p&gt;The Lake Victoria Basin is home to largest freshwater lake (Lake Victoria; LV) in Africa and second largest in the world. Each year on the order of 1,000 fisherman are lost on LV during intense night-time thunderstorms. Despite this, until recently, understanding of the processes contributing to heavy rainfall events was very limited. In this study we present a 10-year (2006-2015) convection permitting (3km grid-spacing) simulation (CPS) of the Lake Victoria Basin using the RegCM version 4.7.0. A lake model is utilized in order to couple the lake regions with RegCM, which has been shown to be of great importance for simulating a realistic lake surface temperature (LST) over LV. The simulated LST from the CPS shows a general warm bias when comparing to ARC Lake observations, however the annual cycle of LST is well represented by the CPS. In the coarser simulation the LST has a large cool bias because of the absence of any lake coupling and this contributes to a large dry bias over LV. The CPS shows a much-improved seasonal rainfall pattern over LV, however there is a general overestimation of the rainfall by the CPS during the peaks in the rainy seasons (March-May; October-December). The CPS shows an improved ability to produce extreme rainfall (&gt;100mm/day) over the western portion of the lake which is consistently found in satellite and in-situ observations. The distribution of rainrates over LV in the CPS is much closer to satellite derived rainfall observations compared to the coarse simulation, demonstrating the improvements made to the simulation of cloud microphysics processes when moving to convection permitting grid-spacing. Mesoscale circulations associated with the diurnal cycle over LV are an important driver of intense night-time thunderstorms. An analysis of the diurnal rainfall cycle over LV shows that the CPS well represents the timing of nocturnal rainfall over the lake which is associated with a strong landbreeze, however the daytime peak in rainfall over the land surrounding the lake is too early. Extreme nocturnal rainfall events over the lake in satellite observations show a clear migration from the previous daytime peak in rainfall westward onto the lake during the night. This suggests a connection between extreme rainfall events at night and the preceding daytime peak in rainfall over land. In the CPS these daytime peaks over the land occur too early and the lakebreeze circulation appears weak compared to the nocturnal landbreeze which is very prominent. The coarse resolution lake coupled simulation shows a surprisingly robust ability to simulate seasonal and annual rainfall associated with mesoscale lake circulations compared to the CPS. The improvement over the coarser simulation seems to be in the CPS&amp;#8217;s ability to capture convection scale interactions which may be important for extreme rainfall events.&lt;/p&gt;


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


Sign in / Sign up

Export Citation Format

Share Document