scholarly journals Evaluation of Shunt Losses in Industrial Silicon Solar Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
P. Somasundaran ◽  
R. Gupta

Shunting is one of the key issues in industrial silicon solar cells which degrade cell performance. This paper presents an approach for investigation of the performance degradation caused by the presence of ohmic extended shunts at various locations in industrial silicon solar cells. Location, nature, and area of the shunts existing in solar cells have been examined by lock-in infrared thermography (LIT). Based on LIT images and experimental darkI-Vcurves of solar cell, shunted cell has been modeled, from which loss in fill factor and efficiency due to the specific shunt has been obtained. Distributed diode modeling approach of solar cell has been exploited for obtaining simulation results which were supported by experimental measurements. The presented approach is useful to estimate performance reduction due to specific shunts and to quantify losses, which can help in improving the efficiency of solar cell during production by tackling the shunt related problems based on the level of severity and tolerance.

2019 ◽  
Vol 958 ◽  
pp. 1-4
Author(s):  
Ricardo de Freitas Cabral ◽  
Marcelo Henrique Prado da Silva ◽  
Eduardo de Sousa Lima

In this paper are presented both the fill factor of 0.75 and an efficiency approaching 14.64 % of solar cell, which were achieved, despite the non-optimized process. A new Cu-based additive of pastes were applied for formation of front contact on silicon solar cells. Front contact were screen-printed using commercial silver paste containing the CuXX additive prepared at laboratory. It is the world's first copper based paste appropriate for high-temperature production processes of front contact of the solar cell.


2019 ◽  
Vol 293 ◽  
pp. 65-72
Author(s):  
Małgorzata Musztyfaga-Staszuk

In this paper are presented both the fill factor of 0.75 and an efficiency approaching 14.64 % of solar cell, which were achieved, despite the non-optimized process. A new Cu-based additive of pastes were applied for formation of front contact on silicon solar cells. Front contact were screen-printed using commercial silver paste containing the CuXX additive prepared at laboratory. It is the world's first copper based paste appropriate for high-temperature production processes of front contact of the solar cell.


2021 ◽  
Author(s):  
Saba Siraj ◽  
Sofia Akbar Tahir ◽  
Adnan Ali

Abstract The aim of this research work was to assess the impact of front and rear grid metallization pattern on the performance of silicon solar cells. We have investigated the effect of front grid metallization design and geometry on the open-circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (ŋ) of silicon solar cells by using Griddler 2.5 simulation program. We used different number of metal fingers ranging from 80–120 having width of 60 µm and different number of busbars ranging from 1–5 busbars on the front and rear side of solar cells for optimization. We have also calculated the efficiency and fill factor at different values of front contact resistance ranging from (0.1–100) mohm-cm2, front and rare layer sheet resistances ranging from (60–110) ohm/sq and different edge gaps. We found that the maximum efficiency and fill factor was obtained with those parameters, when front and rare contact resistances were taken as same. We have designed an optimized silicon solar cell with 115 number of fingers, 4 busbars, front and rare contact resistance of 0.1 mohm-cm2 and front and rare layer sheet resistance of 60 ohm/sq. In this way we were able to successfully optimize the silicon solar cell having efficiency and fill factor of 19.49 % and 81.36 % respectively, for our best optimized silicon solar cell.


2003 ◽  
Vol 762 ◽  
Author(s):  
Guozhen Yuea ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha

AbstractWe have observed a significant light-induced increase in the open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells. In this study, we investigate the kinetics of the light-induced effects. The results show that the cells with different initial Voc have different kinetic behavior. For the cells with a low initial Voc (less than 0.8 V), the increase in Voc is slow and does not saturate for light-soaking time of up to 16 hours. For the cells with medium initial Voc (0.8 ∼ 0.95 V), the Voc increases rapidly and then saturates. Cells with high initial Voc (0.95 ∼ 0.98 V) show an initial increase in Voc, followed bya Voc decrease. All light-soaked cells exhibit a degradation in fill factor. The temperature dependence of the kinetics shows that light soaking at high temperatures causes Voc increase to saturate faster than at low temperatures. The observed results can be explained by our recently proposed two-diode equivalent-circuit model for mixed-phase solar cells.


2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


We know the mechanical properties of silicon. However, little is known about the mechanical properties of silicon solar cells. Modeling is widely used in the study of solar cells. This article discusses in detail the effect of mechanical stress on solar cells. To do this, a model of the solar cell was created and simulated at Comsol Multiphysics. The results were presented visually and graphically. The results were tested for relevance and accuracy


2018 ◽  
Vol 2 (5) ◽  
pp. 999-1006 ◽  
Author(s):  
Woo-Lim Jeong ◽  
Jung-Hong Min ◽  
Hae-Sun Kim ◽  
Ji-Hun Kim ◽  
Jin-Hyeok Kim ◽  
...  

A CZTSSe solar cell fabricated using a graphite box designed with high thermal conductivity exhibited a high shunt resistance and a fill factor.


1970 ◽  
Vol 46 (1) ◽  
pp. 117-122 ◽  
Author(s):  
M Eusuf ◽  
M Khanam ◽  
S Khatun

In part II of this series, it was reported that the solar home system (SHS) supplied by REB in some islands of the Meghna river in the district of Narsingdi could not meet the demand of the recipients in the rainy season when the sky remained overcast with cloud. The tilt angle for all installations was 45° facing south. In this study, effects of direct and diffuse sunlight with variation of tilt angles from 0° to 45° were studied using a mono crystalline silicon cell. Pyranometer and the solar panel were kept under identical conditions. Energy absorbed by the solar panel in diffuse sunlight was found 0.55% of that received by the Pyranometer under similar conditions showing that mono crystalline silicon solar cell of the type under study was not suitable for use in SHS. Moreover, the gap between the panel and the solid surface below it has significant effects on the efficiency of the solar cell. Further similar study using different kinds of cells- mono crystalline, poly crystalline and amorphous is needed for proper designs of SHS. Optimization of the gap between the panel and the solid surface below it is important for roof-mounted and ground-mounted panels. Key words: Silicon solar cells; Tilt angle; Diffuse light; Home lighting; Monocrystaline. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8114 Bangladesh J. Sci. Ind. Res. 46(1), 117-122, 2011   


Sign in / Sign up

Export Citation Format

Share Document