scholarly journals Vector Spaces of New Special Magic Squares: Reflective Magic Squares, Corner Magic Squares, and Skew-Regular Magic Squares

Author(s):  
Thitarie Rungratgasame ◽  
Pattharapham Amornpornthum ◽  
Phuwanat Boonmee ◽  
Busrun Cheko ◽  
Nattaphon Fuangfung

The definition of a regular magic square motivates us to introduce the new special magic squares, which are reflective magic squares, corner magic squares, and skew-regular magic squares. Combining the concepts of magic squares and linear algebra, we consider a magic square as a matrix and find the dimensions of the vector spaces of these magic squares under the standard addition and scalar multiplication of matrices by using the rank-nullity theorem.

2019 ◽  
Vol 103 (557) ◽  
pp. 265-276
Author(s):  
K. Robin McLean

Magic squares have long been popular in recreational mathematics. Their potential for introducing students to ideas in linear algebra was recognised over forty years ago in [1] and later in [2]. More recently they have proved to be a fascinating topic for undergraduate exploration, especially when students have access to a computer algebra package [3]. Some results on powers of magic square matrices can be found in [4], [5] and [6]. (Readers who google the title ‘Odd magic powers’ of Thompson’s paper [5] will be treated to a wide variety of non-mathematical exotica!)


1980 ◽  
Vol 53 (2) ◽  
pp. 108 ◽  
Author(s):  
James E. Ward
Keyword(s):  

Author(s):  
David I. Spivak

Category theory is presented as a mathematical modelling framework that highlights the relationships between objects, rather than the objects in themselves. A working definition of model is given, and several examples of mathematical objects, such as vector spaces, groups, and dynamical systems, are considered as categorical models.


2020 ◽  
Vol 34 (05) ◽  
pp. 8131-8138
Author(s):  
Anne Lauscher ◽  
Goran Glavaš ◽  
Simone Paolo Ponzetto ◽  
Ivan Vulić

Distributional word vectors have recently been shown to encode many of the human biases, most notably gender and racial biases, and models for attenuating such biases have consequently been proposed. However, existing models and studies (1) operate on under-specified and mutually differing bias definitions, (2) are tailored for a particular bias (e.g., gender bias) and (3) have been evaluated inconsistently and non-rigorously. In this work, we introduce a general framework for debiasing word embeddings. We operationalize the definition of a bias by discerning two types of bias specification: explicit and implicit. We then propose three debiasing models that operate on explicit or implicit bias specifications and that can be composed towards more robust debiasing. Finally, we devise a full-fledged evaluation framework in which we couple existing bias metrics with newly proposed ones. Experimental findings across three embedding methods suggest that the proposed debiasing models are robust and widely applicable: they often completely remove the bias both implicitly and explicitly without degradation of semantic information encoded in any of the input distributional spaces. Moreover, we successfully transfer debiasing models, by means of cross-lingual embedding spaces, and remove or attenuate biases in distributional word vector spaces of languages that lack readily available bias specifications.


Author(s):  
Malath F. Alaswad ◽  

This paper is dedicated to reviewing some of the basic concepts in neutrosophic linear algebra and its generalizations, especially neutrosophic vector spaces, refined neutrosophic, and n-refined neutrosophic vector spaces. Also, this work gives the interested reader a strong background in the study of neutrosophic matrix theory and n-refined neutrosophic matrix theory. We study elementary properties of these concepts such as Kernel, AH-Quotient, and dimension.


Author(s):  
Stewart Hengeveld ◽  
Giancarlo Labruna ◽  
Aihua Li

A magic square M M over an integral domain D D is a 3 × 3 3\times 3 matrix with entries from D D such that the elements from each row, column, and diagonal add to the same sum. If all the entries in M M are perfect squares in D D , we call M M a magic square of squares over D D . In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring Z \mathbb {Z} of the integers which has all the nine entries distinct?” We approach to answering a similar question when D D is a finite field. We claim that for any odd prime p p , a magic square over Z p \mathbb Z_p can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers p p such that, over Z p \mathbb Z_p , magic squares of squares with nine distinct elements exist. In addition, if p ≡ 1 ( mod 120 ) p\equiv 1\pmod {120} , there exist magic squares of squares over Z p \mathbb Z_p that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1983 ◽  
Vol 35 (2) ◽  
pp. 353-372 ◽  
Author(s):  
Panaiotis K. Pavlakos

M. Sion and T. Traynor investigated ([15]-[17]), measures and integrals having values in topological groups or semigroups. Their definition of integrability was a modification of Phillips-Rickart bilinear vector integrals, in locally convex topological vector spaces.The purpose of this paper is to develop a good notion of an integration process in partially ordered groups, based on their order structure. The results obtained generalize some of the results of J. D. M. Wright ([19]-[22]) where the measurable functions are real-valued and the measures take values in partially ordered vector spaces.Let if be a σ-algebra of subsets of T, X a lattice group, Y, Z partially ordered groups and m : H → F a F-valued measure on H. By F(T, X), M(T, X), E(T, X) and S(T, X) are denoted the lattice group of functions with domain T and with range X, the lattice group of (H, m)-measurable functions of F(T, X) and the lattice group of (H, m)-elementary measurable functions of F(T, X) and the lattice group of (H, m)-simple measurable functions of F(T, X) respectively.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050183
Author(s):  
Yuta Hyodo ◽  
Teruyuki Kitabayashi

The magic texture is one of the successful textures of the flavor neutrino mass matrix for the Majorana type neutrinos. The name “magic” is inspired by the nature of the magic square. We estimate the compatibility of the magic square with the Dirac, instead of the Majorana, flavor neutrino mass matrix. It turned out that some parts of the nature of the magic square are appeared approximately in the Dirac flavor neutrino mass matrix and the magic squares prefer the normal mass ordering rather than the inverted mass ordering for the Dirac neutrinos.


1991 ◽  
Vol 98 (6) ◽  
pp. 481-488 ◽  
Author(s):  
Christopher J. Henrich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document