scholarly journals DAMPs Synergize with Cytokines or Fibronectin Fragment on Inducing Chondrolysis but Lose Effect When Acting Alone

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Ding ◽  
Joseph A. Buckwalter ◽  
James A. Martin

Objective and Design. To investigate whether endogenous damage-associated molecular patterns (DAMPs) or alarmins originated from mitochondria or nucleus stimulates inflammatory response in articular chondrocytes to cause chondrolysis which leads to cartilage degradation featured in posttraumatic osteoarthritis (PTOA).Materials. Primary cultures of bovine or human chondrocytes isolated from cartilage of weight-bearing joints.Treatment. Chondrocytes were subjected to mitochondrial DAMPs (MTDs) or HMGB1, a nuclear DAMP (NuD), with or without the presence of an N-terminal 29 kDa fibronectin fragment (Fn-f) or proinflammatory cytokines (IL-1βand TNF-α). Injured cartilage-conditioned culturing medium containing a mixture of DAMPs was employed as a control. After 24 hrs, the protein expression of cartilage degrading metalloproteinases and iNOS in culture medium or cell lysates was examined with Western blotting, respectively.Results. HMGB1 was synergized with IL-1βin upregulating expression of MMP-3, MMP-13, ADAMTS-5, ADAM-8, and iNOS. Moreover, a moderate synergistic effect was detected between HMGB1 and Fn-f or between MTDs and TNF-αon MMP-3 expression. However, when acting alone, MTDs or HMGB1 did not upregulate cartilage degrading enzymes or iNOS.Conclusion. MTDs or HMGB1 could only stimulate inflammatory response in chondrocytes with the presence of cytokines or Fn-f.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 976
Author(s):  
Eleonora Mezzaroma ◽  
Antonio Abbate ◽  
Stefano Toldo

Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.


2001 ◽  
Vol 114 (21) ◽  
pp. 3813-3822 ◽  
Author(s):  
Rita Dreier ◽  
Shona Wallace ◽  
Susanne Fuchs ◽  
Peter Bruckner ◽  
Susanne Grässel

Cells of the monocyte/macrophage lineage are involved in the development of inflammatory joint diseases such as rheumatoid arthritis. This disease is characterized by cartilage degradation and synovial membrane inflammation with a progressive loss of joint function. The pathological processes are still not well understood. Therefore it would be interesting to develop a suitable experimental in vitro model system for defined studies of monocyte/macrophage and chondrocyte interactions at the molecular level. For that purpose we cocultured chondrocytes from adult human articular cartilage with human monocytes and macrophages for defined periods of time in agarose without addition of serum. We performed zymographic and western blot analysis of culture medium, completed by quantitative RT-PCR of each chondrocyte, monocyte and macrophage RNA, respectively. The reliability of the newly established coculture systems is confirmed by causing a clear decrease of intact aggrecan in the coculture medium plus concurrent appearance of additional smaller fragments and a reduction of chondrocyte aggrecan and collagen II gene expression in the presence of monocytes. In culture medium from cocultures we detected active forms of the matrix metalloproteinases MMP-1, MMP-3 and MMP-9 accompanied by induction of gene expression of MMP-1, membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in chondrocytes. No gene expression of MMP-9 was detectable in chondrocytes, the enzyme was solely expressed in monocytes and macrophages and was downregulated in the presence of chondrocytes. Our results suggest that MMP-9 protein in coculture medium originated from monocytes and macrophages but activation required chondrocyte-derived factors. Because addition of plasmin, a partial activator of pro-MMP-3 and pro-MMP-1, enhanced the activation of pro-MMP-9 and pro-MMP-1 in cocultures but not in monocultured macrophages, and the presence of MMP-3 inhibitor II prevented pro-MMP-9 activation, we assumed a stepwise activation process of pro-MMP-9 that is dependent on the presence of at least MMP-3 and possibly also MMP-1.


2017 ◽  
Author(s):  
Tong-Fei Li ◽  
Ke Li ◽  
Chao Wang ◽  
Xin Liu ◽  
Yu Wen ◽  
...  

AbstractGlioblastoma (GBM) is the most frequent and malignant brain tumor with a high mortality rate. The presence of a large population of macrophages (Mφ) in the tumor microenvironment is a prominent feature of GBM and these so-called tumor-associated Mφ (TAM) closely interact with the GBM cells to promote the survival, progression and therapy resistance of the GBM. Various therapeutic strategies have been devised either targeting the GBM cells or the TAM but few have addressed the cross-talks between the two cell populations. The present study was carried out to explore the possibility of exploiting the cross-talks between the GBM cells (GC) and TAM for modulation of the GBM microenvironment through using Nano-DOX, a drug composite based on nanodiamonds bearing doxorubicin. In the in vitro work on human cell models, Nano-DOX-loaded TAM were first shown to be viable and able to infiltrate three-dimensional GC spheroids and release cargo drug therein. GC were then demonstrated to encourage Nano-DOX-loaded TAM to unload Nano-DOX back into GC which consequently emitted damage-associated molecular patterns (DAMPs) that are powerful immunostimulatory agents as well as indicators of cell damage. Nano-DOX was next proven to be a more potent inducer of GC DAMPs emission than doxorubicin. As a result, Nano-DOX-damaged GC exhibited an enhanced ability to attract both TAM and Nano-DOX-loaded TAM. Most remarkably, Nano-DOX-damaged GC reprogrammed the TAM from a pro-GBM phenotype to an anti-GBM phenotype that suppressed GC growth. Finally, the in vivo relevance of the in vitro findings was tested in animal study. Mice bearing orthotopic human GBM xenografts were intravenously injected with Nano-DOX-loaded mouse TAM which were found releasing drug in the GBM xenografts 24 h after injection. GC damage was evidenced by the induction of DAMPs emission within the xenografts and a shift of TAM phenotype was detected as well. Taken together, our results demonstrate a novel way with therapeutic potential to harness the cross-talk between GBM cells and TAM for modulation of the tumor immune microenvironment.AbbreviationsATP, adenosine triphosphate; BBB, blood-brain barrier; BCA, bicinchoninic acid; BMDM, bone marrow derived macrophages; CD, cluster of differentiation; CFSE, 5(6)-carboxyfluorescein diacetate, succinimidyl ester; CM, conditioned culture medium; CNS, central nervous system; CRT, calreticulin; DAMPs, damage-associated molecular patterns; DAB, diaminobenzidine; DOX, doxorubicin; ECL, enhanced chemiluminescence; ELISA, enzyme-linked immunosorbent assay; HMGB1, high mobility group protein B1; HSP90, heat shock protein 90; FACS, flow cytometry; GBM, glioblastoma; Guanylate Binding Protein 5 (GBP5); GC, glioblastoma cells; IHC, immunohistochemical; IL, interleukin; Mφ, macrophages; mBMDM, mouse BMDM; mBMDM2, Type-2 mBMDM; M1, Type-1 Mø; M2, Type-2 Mø; Nano-DOX, ND-PG-RGD-DOX; ND, nanodiamonds; Nano-DOX-mBMDM, Nano-DOX-loaded mouse BMDM; NGCM, Nano-DOX-treated-GC-conditioned medium; PBS, phosphate buffered saline; PG, polyglycerol; PMA, phorbol 12-myristate 13-acetate; PVDF, polyvinylidene fluoride; RGD, tripeptide of L-arginine, glycine and L-aspartic acid; RM, regular culture medium; SD, standard deviation; TAM, tumor-associated Mφ; TBST, Tris Buffered Saline with Tween® 20.Graphic abstract


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lili Jiang ◽  
Yijia Shao ◽  
Yao Tian ◽  
Changsheng Ouyang ◽  
Xiaohua Wang

Pathogen-associated molecular patterns (PAMPs) are some nonspecific and highly conserved molecular structures of exogenous specific microbial pathogens, whose products can be recognized by pattern recognition receptor (PRR) on innate immune cells and induce an inflammatory response. Under physiological stress, activated or damaged cells might release some endogenous proteins that can also bind to PRR and cause a harmful aseptic inflammatory response. These endogenous proteins were named damage-associated molecular patterns (DAMPs) or alarmins. Indeed, alarmins can also play a beneficial role in the tissue repair in certain environments. Besides, some alarmin cytokines have been reported to have both nuclear and extracellular effects. This group of proteins includes high-mobility group box-1 protein (HMGB1), interleukin (IL)-33, IL-1α, IL-1F7b, and IL-16. In this article, we review the involvement of nuclear alarmins such as HMGB1, IL-33, and IL-1α under physiological state or stress state and suggest a novel activity of these molecules as central initiators in the development of sterile inflammation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Cécile Lambert ◽  
Jérémie Zappia ◽  
Christelle Sanchez ◽  
Antoine Florin ◽  
Jean-Emile Dubuc ◽  
...  

During the osteoarthritis (OA) process, activation of immune systems, whether innate or adaptive, is strongly associated with low-grade systemic inflammation. This process is initiated and driven in the synovial membrane, especially by synovium cells, themselves previously activated by damage-associated molecular patterns (DAMPs) released during cartilage degradation. These fragments exert their biological activities through pattern recognition receptors (PRRs) that, as a consequence, induce the activation of signaling pathways and beyond the release of inflammatory mediators, the latter contributing to the vicious cycle between cartilage and synovial membrane. The primary endpoint of this review is to provide the reader with an overview of these many molecules categorized as DAMPs and the contribution of the latter to the pathophysiology of OA. We will also discuss the different strategies to control their effects. We are convinced that a better understanding of DAMPs, their receptors, and associated pathological mechanisms represents a decisive issue for degenerative joint diseases such as OA.


Reproduction ◽  
2000 ◽  
pp. 391-396 ◽  
Author(s):  
AH Duittoz ◽  
M Batailler

The aim of this study was to investigate the development of pulsatile GnRH secretion by GnRH neurones in primary cultures of olfactory placodes from ovine embryos. Culture medium was collected every 10 min for 8 h to detect pulsatile secretion. In the first experiment, pulsatile secretion was studied in two different sets of cultures after 17 and 24 days in vitro. In the second experiment, a set of cultures was tested after 10, 17 and 24 days in vitro to investigate the development of pulsatile GnRH secretion in each individual culture. This study demonstrated that (i) primary cultures of GnRH neurones from olfactory explants secreted GnRH in a pulsatile manner and that the frequency and mean interpulse duration were similar to those reported in castrated ewes, and (ii) pulsatile secretion was not present at the beginning of the culture but was observed between 17 and 24 days in vitro, indicating the maturation of individual neurones and the development of their synchronization.


APOPTOSIS ◽  
2021 ◽  
Vol 26 (3-4) ◽  
pp. 152-162
Author(s):  
Atsushi Murao ◽  
Monowar Aziz ◽  
Haichao Wang ◽  
Max Brenner ◽  
Ping Wang

AbstractDamage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.


Sign in / Sign up

Export Citation Format

Share Document