scholarly journals Neuroprotective and Cognitive-Enhancing Effects of Microencapsulation of Mulberry Fruit Extract in Animal Model of Menopausal Women with Metabolic Syndrome

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Supannika Kawvised ◽  
Jintanaporn Wattanathorn ◽  
Wipawee Thukham-mee

Currently, the neuroprotectant and memory-enhancing agent for menopausal women with metabolic syndrome is required. Based on the advantages of polyphenolics on numerous changes observed in menopause with metabolic syndrome and the encapsulation method, we hypothesized that microencapsulated mulberry fruit extract (MME) could protect brain damage and improve memory impairment in an animal model of menopause with metabolic syndrome. To test this hypothesis, MME at doses of 10, 50, and 250 mg/kg was given to female Wistar rats which were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and fed with high-carbohydrate high-fat (HCHF) diet for 8 weeks. Spatial memory together with neuron density, oxidative stress status, acetylcholinesterase, and phosphorylation of Erk in the hippocampus was assessed at the end of the study. It was found that MME decreased memory impairment, oxidative stress status, and AChE activity but increased neuron density and Erk phosphorylation in the hippocampus. Therefore, the neuroprotective and memory-enhancing effects of MME might partly involve the enhanced cholinergic function and Erk phosphorylation but decreased oxidative stress status in hippocampus. Therefore, MME is the potential novel neuroprotectant and memory-enhancing agent for menopause with metabolic syndrome. However, further research especially clinical trial is still necessary.

2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Supannika Kawvised ◽  
Wipawee Thukham-mee

Currently, the therapeutic strategy against metabolic syndrome and its complications is required due to the increasing prevalence and its impact. Due to the benefits of both mulberry fruit extract and encapsulation technology, we hypothesized that encapsulated mulberry fruit extract (MME) could improve metabolic parameters and its complication risk in postmenopausal metabolic syndrome. To test this hypothesis, female Wistar rats were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and high-carbohydrate high-fat (HCHF) diet. Then, they were orally given MME at doses of 10, 50, and 250 mg/kg BW for 8 weeks and the parameters, such as percentage of body weight gain, total cholesterol, triglycerides, HDL-C, LDL-C, atherogenic index, fasting blood glucose, plasma glucose area under the curve, serum angiotensin-converting enzyme (ACE), oxidative stress status, histology, and protein expression of PPAR-γ, TNF-α, and NF-κB in adipose tissues were determined. MME improved body weight gain, adiposity index, glucose intolerance, lipid profiles, atherogenic index, ACE, oxidative stress status, and protein expression of TNF-αand NF-κB. Moreover, MME attenuated adipocyte hypertrophy and enhanced PPAR-γexpression. Taken altogether, MME decreased metabolic syndrome and its complication via the increased PPAR-γexpression. Therefore, MME is the potential candidate for improving metabolic syndrome and its related complications. However, further research in clinical trial is still necessary.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Woranan Kirisattayakul ◽  
Jintanaporn Wattanathorn ◽  
Sittichai Iamsaard ◽  
Jinatta Jittiwat ◽  
Bhalang Suriharn ◽  
...  

The neuroprotectant and memory enhancer supplement for menopause is required due to the side effects of hormone replacement therapy. Since purple waxy corn cob and pandan leaves exert antioxidant and acetylcholinesterase inhibition (AChEI) effects, we hypothesized that the combined extract of both plants (PCP) might provide synergistic effect leading to the improved brain damage and memory impairment in experimental menopause. To test this hypothesis, female Wistar rats were ovariectomized bilaterally and orally given various doses of the functional drink at doses of 20, 40, and 80 mg/kg for 28 days. The animals were assessed nonspatial memory using object recognition test every 7 days throughout the study period. At the end of study, they were assessed with oxidative stress status, AChEI, neuron density, and ERK1/2 signal in the prefrontal cortex (PFC). Interestingly, all doses of PCP increased object recognition memory and neuron density but decreased oxidative stress status in PFC. Low dose of PCP also decreased AChE activity while medium dose of PCP increased phosphorylation of ERK1/2 in PFC. Therefore, the improved oxidative stress status and cholinergic function together with signal transduction via ERK in PFC might be responsible for the neuroprotective and memory-enhancing effects of PCP.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Pratchaya Kaewkaen ◽  
Terdthai Tong-un ◽  
Jintanaporn Wattanathorn ◽  
Supaporn Muchimapura ◽  
Wiroje Kaewrueng ◽  
...  

Nowadays, the preventive strategy of vascular dementia, one of the challenge problems of elderly, has received attention due to the limitation of therapeutic efficacy. In this study, we aimed to determine the protective effect and possible mechanism of action of mulberry fruit extract on memory impairment and brain damage in animal model of vascular dementia. Male Wistar rats, weighing 300–350?g, were orally given mulberry extract at doses of 2, 10 and 50?mg/kg at a period of 7 days before and 21 days after the occlusion of right middle cerebral artery (Rt.MCAO). It was found that rats subjected to mulberry fruits plus Rt.MCAO showed the enhanced memory, the increased densities of neuron, cholinergic neuron, Bcl-2-immunopositive neuron together with the decreased oxidative stress in hippocampus. Taken all data together, the cognitive enhancing effect of mulberry fruit extract observed in this study might be partly associated with the increased cholinergic function and its neuroprotective effect in turn occurs partly via the decreased oxidative stress and apoptosis. Therefore, mulberry fruit is the potential natural cognitive enhancer and neuroprotectant. However, further researches are essential to elucidate the possible active ingredient.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Warin Ohnon ◽  
Jintanaporn Wattanathorn ◽  
Wipawee Thukham-mee ◽  
Supaporn Muchimapura ◽  
Panakaporn Wannanon ◽  
...  

Despite the increase in cognitive deficit following stroke in metabolic syndrome (MetS) condition, the therapeutic strategy is still limited. Since oxidative stress and neuroinflammation play the crucial roles on the pathophysiology of aforementioned conditions, the cognitive enhancing effect of the combined extract ofOryza sativaandAnethum graveolenswas considered based on their antioxidant, anti-inflammation, and neuroprotective effects together with the synergistic effect concept. Male Wistar rats weighing 180-220 g were induced metabolic syndrome-like condition by using a high-carbohydrate high-fat diet (HCHF diet). Then, reperfusion injury following cerebral ischemia was induced by the occlusion of right middle cerebral artery and treated with the combined extract ofO. sativaandA. graveolens(OA extract) at doses of 0.5, 5, and 50 mg/kg BW once daily for 21 days. Spatial memory was assessed every 7 days throughout the experimental period. At the end of the study, neuron and glial fibrillary acidic protein- (GFAP-) positive cell densities, the oxidative stress status, AChE, and the expression of proinflammatory cytokines (TNF-α, IL-6) in the hippocampus were determined. The results showed that OA extract at all doses used in this study significantly improved memory together with the reductions of MDA, TNF-α, IL-6, AChE, and density of GFAP-positive cell but increased neuron density in the hippocampus. Taken together, OA is the potential cognitive enhancer in memory impairment following stroke in MetS condition. The possible underlying mechanism may occur partly via the reductions of oxidative stress status, GFAP-positive cell density, and neuroinflammatory cytokines such as TNF-αand IL-6 together with the suppression of AChE activity in the hippocampus. This study suggests that OA is the potential functional ingredient to improve the cognitive enhancer. However, further clinical research is required.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Thawatchai Prabsattroo ◽  
Jintanaporn Wattanathorn ◽  
Pichet Somsapt ◽  
Opass Sritragool

Due to the crucial role of oxidative stress in the stress-induced memory deficit, the benefit of substance possessing antioxidant effect is focused. Since no data are available, we aimed to determine the effect ofNelumbo nuciferaflowers extract on spatial memory and hippocampal damage in stressed rats. Male Wistar rats, weighing 250–350 g, were orally givenN. nuciferaextract at doses of 10, 10, and 200 mg·kg−145 minutes before the exposure to 12-hour restraint stress. The spatial memory and serum corticosterone were assessed at 7 and 14 days of study period. At the end of study, acetylcholinesterase (AChE), monoamine oxidase type A and monoamine oxidase type B (MAO-A and MAO-B), oxidative stress status, neuron density, and Ki67 expression in hippocampus were also assessed. The results showed thatN. nuciferaextract decreased memory deficit and brain damage, serum corticosterone, oxidative stress status, AChE, and MAO-A and MAO-B activities but increased neuron density and Ki67 expression in hippocampus. These suggested that the improved oxidative stress status, adult neurogenesis, and cholinergic and monoaminergic functions might be responsible for the protective effect against stress-related brain damage and dysfunction of the extract. Therefore,N. nuciferaextract is the potential neuroprotective and memory enhancing agent. However, further researches are still required.


Sign in / Sign up

Export Citation Format

Share Document